E=C0([0,1]; R)F=C1([0,1]; R)f∈E
kfk∞:= sup
t∈[0,1] |f(t)|.
k·k∞E F
(E, k·k∞) (F, k·k∞)
E=C[X]k · k∞k · k1C R+
P=Pn
i=0 aiXi∈C[X]7−→ kPk∞:= max06i6n|ai|,
P=Pn
i=0 aiXi∈C[X]7−→ kPk1:= Pn
i=0 |ai|.
k·k∞k·k1E
(E, k·k∞) (E, k·k1)
k·k∞k·k1
E=C0([0,1]; R)g∈E
Φ : E→R
f7→ R1
0f(t)g(t)dt.
E f 7→ kfk∞:= supt∈[0,1] |f(t)|Φ
(E, k·k∞)
(E, k · kE) (F, k · kF)u:E→F
u
(xn)n∈NE0u(xn)n∈N
F
E=Rnx= (x1, . . . , xn)7→ kxk1:= Pn
i=1 |xi|
x= (x1, . . . , xn)7→ kxk2:= (Pn
i=1 |xi|2)1/2x= (x1, . . . , xn)7→ kxk∞:= max16i6n|xi|E
x∈Rn\ {0}kxk∞6kxk16nkxk∞
kxk∞6kxk26(√n)kxk∞
1
√nkxk16kxk26kxk1.
E=C0([0,1]; R)f∈E
kfk∞:= sup
t∈[0,1] |f(t)| kfk1:= Z1
0|f(t)|dt.
k·k∞k·k1E