n m
m
k∈ {0, . . . , n}m k
k
Cm
nm
m k
k m Ck
mmk n m
Cmk
nmmknm k 2mn
Ck
mCmk
nm=m!(nm)!
k!(mk)!2(n2m+k)!.
P(n, m, k) = Ck
mCmk
nm
Cm
n
=m!2(nm)!2
n!k!(mk)!2(n2m+k)!.
kmax(0,2mn)k < m
k
P(n, m, k + 1)
P(n, m, k)=(mk)2
(k+ 1)(n2m+k+ 1) =(mk)2
(n/2+1(mk))2(n/2m)2.
k k =m1 1
1P(n, m, k)k
max(0,2mn)k0m2kk0
k0= max(0,2mn)k0
P(n, m, k + 1)
P(n, m, k)>1(mk)2<(n/2+1(mk))2(n/2m)2.
P(n, m, k + 1) > P (n, m, k)(n+ 2)k < m2+ 2mn1.
P(n, m, k)
k=k0:= 1 + m2+ 2mn1
n+ 2 =(m+ 1)2
n+ 2 .
(m+1)2
n+2 k01
k0k
P(n, m, k)k/m
m/n
α, β ]0,1[ (i, j)N2pi,j =αβ(1α)i(1β)j
P({(i, j)}) = pij (i, j)N2
N2
(i, j)N2X((i, j)) = i Y ((i, j)) = j
X Y
P(X < Y )P(X=Y)P(X > Y )
(i, j)N2pi,j 0P(i,j)N2pi,j = 1
pi,j PiNxi= 1/(1 x)x= 1 α
x= 1 β
X
(i,j)N2
pi,j =X
iNX
jN
αβ(1 α)i(1 β)j=X
iN
α(1 α)i= 1.
kNPjNβ(1 β)j= 1
P(X=k) = X
(i,j)N2
pi,j {k}(i) = X
jN
pk,j =α(1 α)k.
X α P(Y=k) = β(1 β)k
Y β
P(X < Y ) = X
(i,j)N2
i<j
pi,j =
X
i=0
X
j=i+1
pi,j .
iNP
j=i+1 β(1 β)j= (1 β)i+1
P(X < Y ) =
X
i=0
α(1α)i(1β)i+1 =
X
i=0
α(1β) ((1 α)(1 β))i=α(1 β)
1(1 α)(1 β)=ααβ
α+βαβ .
X Y α β
P(X > Y ) = βαβ
α+βαβ .
P(X=Y)pi,i
{X=Y} {X < Y } {X > Y }N2
P(X=Y)=1P(X > Y )P(X < Y ) = α+βαβ (βαβ)(ααβ)
α+βαβ =αβ
α+βαβ .
XNn0pn=
P(X=n)pn>0λ > 0
X λ
n1pn
pn1
=λ
n
nNpn= exp(λ)λn
n!
n
pn=p0
λn
n!.
p0PnNpn= 1
p0PnN
λn
n!= 1 p0exp(λ) = 1
XN
E[X] = X
n1
P(Xn).
(am,n)m,n1
X
n1X
m1
am,n =X
m1X
n1
am,n.
X
n1
P(Xn) = X
n1X
mn
P(X=m)
=X
n1X
m1
{mn}P(X=m)
=X
m1X
n1
{mn}P(X=m)
=X
m1
mP(X=m)
=E[X],
X, Y : (Ω,F,P)N N
X
n0
nP(X=n) + X
n0
nP(Y=n) = X
n0
nP(X+Y=n).
E(X)+E(Y)
E(X+Y)
X
n0
nP(X+Y=n) = X
n0
n
X
k=0
nP(X=k Y =nk)
=X
n0X
k0
{kn}nP(X=k Y =nk)
=X
k0X
n0
{kn}nP(X=k Y =nk)
=X
k0X
nk
nP(X=k Y =nk)
=X
k0X
l0
(k+l)P(X=k Y =l)
=X
k0
kX
l0
P(X=k Y =l) + X
l0
lX
k0
P(X=k Y =l).
l=nk
k0l
{X=k}
l0k
{Y=l}
X
n0
nP(X+Y=n) = X
k0
kP(X=k) + X
l0
lP(Y=l),
(Ω,F,P)X: Ω R
X(Ω) N
s[0,1] sX
00= 1
X
GX: [0,1] R
s7−E[sX].
GX0
1
GXX
p[0,1]
n0p[0,1]
p]0,1[
λ > 0
s(0,1] X(Ω) N
X(Ω) R+xR7→ sxR
X sX
1
s= 0 sX={X=0}
s t 0st1ω 0
sX(ω)tX(ω)1
0GX(s)GX(t)1GXGX(0) = P(X= 0)
GX(1) = 1
X
1 / 7 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !