P(n, m, k)
k=k0:= 1 + m2+ 2m−n−1
n+ 2 =(m+ 1)2
n+ 2 .
(m+1)2
n+2 k0−1
k0k
P(n, m, k)k/m
m/n
α, β ∈]0,1[ (i, j)∈N2pi,j =αβ(1−α)i(1−β)j
P({(i, j)}) = pij (i, j)∈N2
N2
(i, j)∈N2X((i, j)) = i Y ((i, j)) = j
X Y
P(X < Y )P(X=Y)P(X > Y )
∀(i, j)∈N2pi,j ≥0P(i,j)∈N2pi,j = 1
pi,j Pi∈Nxi= 1/(1 −x)x= 1 −α
x= 1 −β
X
(i,j)∈N2
pi,j =X
i∈NX
j∈N
αβ(1 −α)i(1 −β)j=X
i∈N
α(1 −α)i= 1.
k∈NPj∈Nβ(1 −β)j= 1
P(X=k) = X
(i,j)∈N2
pi,j {k}(i) = X
j∈N
pk,j =α(1 −α)k.
X α P(Y=k) = β(1 −β)k
Y β
P(X < Y ) = X
(i,j)∈N2
i<j
pi,j =
∞
X
i=0
∞
X
j=i+1
pi,j .
i∈NP∞
j=i+1 β(1 −β)j= (1 −β)i+1
P(X < Y ) =
∞
X
i=0
α(1−α)i(1−β)i+1 =
∞
X
i=0
α(1−β) ((1 −α)(1 −β))i=α(1 −β)
1−(1 −α)(1 −β)=α−αβ
α+β−αβ .