
n
X
k=1
|xk||xk+yk|p−1≤ n
X
k=1
|xk|p!1
p n
X
k=1
|xk+yk|p!1−1
p
n
X
k=1
|yk||xk+yk|p−1≤ n
X
k=1
|yk|p+!1
p n
X
k=1
|xk+yk|p!1−1
p
.
(|x1+y1|p+... +|xn+yn|p)1
p≤(|x1|p+... +|xn|p)1
p+ (|y1|p+... +|yn|p)1
p.
p∈]1,+∞[n∈N∗x1, x2, ..., xnR
k(x1, ..., xn)kp= (|x1|p+... +|xn|p)1
p
k(x1, ..., xn)k∞|x1|,|x2|, ..., |xn|
∀p∈]1,+∞[,k(x1, ..., xn)k∞≤ k(x1, ..., xn)kp≤n1
pk(x1, ..., xn)k∞.
lim
p→+∞k(x1, ..., xn)kp.
(p, q)∈(R∗
+)21/p + 1/q = 1 (a, b)∈R2a<b
f g [a;b]
∀λ∈R∗
+,Zb
a
|fg| ≤ λp
pZb
a
|f|p+λ−q
qZb
a
|g|q.
Zb
a
|f|p= 0 Zb
a
|g|q= 0 Zb
a
|fg|= 0
λ
Zb
a
|fg| ≤ Zb
a
|f|p
1
pZb
a
|g|q
1
q
.
Zb
a
|f||f+g|p−1≤Zb
a
|f|p
1
pZb
a
|f+g|p1−1
p
BY:
$
\
C