Pn=1
n
n
k=1
(k+n)1
n
un=1
n
n
(n+ 1)(n+ 2)...(n+n)
Sn=
n
k=0
kCk
nf(x) =
n
k=0
xkCk
nf(x)
SnCk
nCk+1
n+1
Sn
(u)u0>0u1>0nN
un+2 =unun+1 unn
un+3 =3
unun+1un+2
lim
n+
n
2n
an
1
aa > 0
nNxnnx + 1 = 0
un]0,1[ (un)
un
u0>0n un+1 =u2
n+ 3
2un+ 2
(un)un+1 +un1
n
E=Cp([0,1],C)k0kp f E
Nk(f) = |f(0)|+|f(0)|+... +|f(k1)(0)|+||f(k)||
NkE
NjNk
E=Mn(R)
KR2O
O K
K, L R2K
KL=K L
(1)n
nα+ (1)nα > 0
un= (n4+n2)1/4P(n)1/3P
Pun
(un)nNnN
vn=un
1 + un
, wn=un
1 + u2
n
unvn
unwn
Un= cos n2πln n1
n
p∈ {2,3,4}Un= sin π(1 + np)1
p
p
N
u0= 1 nNun+1 =un
1 + 2un
1 + 3un
1
un+1 1
unun
a, b u u0>0
nNun+1 =n+a
n+bwn=
ln nbaun(a, b)
un
lim nun= 0
un=(1)n
n+ (1)nun= ln 1 + (1)n
n
tRt̸= 0 un=eit ln n
un+1 un(un/n)
(un)
un2u2n1
n1+it
fR R
xR, f(2x) = 2f(x).
fR R
(x, y)R2, f(x)f(y) = y+2x
x+2y
f(t)dt
f:xR7→ ex21
xf(0) = 0
f f(0)
f, f 3, f 5f
f f
cR R f1
x7→ (f1(x))5
f c2]1,1[ R
lim
x0
1
xf(x)f(x)f(0)
x
fRlim
x+f(x) = +
lim
x+
f(x)
x= +
fC2(R,R)f f′′ Rf
R
f:x7→ ln |ln |x||
F c1[0,1] R
1
0
xF (x)F(x)dx ≥ −1
21
0
F2(x)dx
f[0,1] RF F (x) = 1
xx
0
f(t)dt
1
0
F2(t)dt 41
0
f2(t)dt
+
0
ln t
etdt
f]0,1]
]0,1] 1
0f(t)dt
limx0xf(x) = 0
x7→ x
1
et
tdt
f:x7→ 1
0
t1
ln(t)txdt
a < b b
a
dx
(xa)(bx)
F(x) = +
−∞
et2eixtdt
F
I=π
2
0
ln(sin x)dx J =π
2
0
ln(cos x)dx
I=π
0
ln acos t
bcos tdt a > 1b > 1
F(u) = π
0
ln(ucos t)dt
J(t) = 1
ππ
0
cos(tcos θ)dθ L(x) = +
0
J(t)extdt
J c1RJ
+
φ ψ J(t) =+φ(t) + o(ψ(t))
J
a0, b0, a1, b1, a2, b2
tR,(a0+b0t)J(t)+(a1+b1t)J(t)+(a2+b2t)J′′(t) = 0.
L x 0L(0)
x > 0+
0
tJ(t)dt +
0
tJ(t)dt
L
f:x7→ ex2F:x7→ +
x
f(t)dt F
+F(k)k∈ {1,2, ..., 40}
f(x)/F (x)F(x)+
f(x)
2x
1
0
ln(1 + tn)dt π2
12n
f(a) = +
0
xln x
(1 + x2)adx
f(2) f(3)
aRJ(a) = +
0
sin ax
ex1dx
J(a) =
+
n=1
a
a2+n2
2π eax [0,2π[J(a)
an=+
−∞
1
(1 + t+t2)ndt
f(t) = 1
t+t2+ 1
ananun=+
0
1
(1 + u2)ndu
unun+1
+
0
x
1 + x4|sin x|3/2dx
fR R F:x7→ x
0
sin(xt)f(t)dt
Ry” + y=f
nNπ/2
0
sin2(nx)
sin2xdx eix
lim
x++
0
sin(xt2)
1 + t2dt
nNx > 0fn(x) = sin nx
nx +xx
fnf
]0,+[
Un=+
0
fn(t)dt (Un)
f0: [a, b]R[a, b]]1,1[
nN,x[a, b], fn+1(x) = x
a
fn(t)dt.
fn
S(x) =
+
n=1
1
xn2+n
S c1R
+
0++S(x)
x f(x) =
+
n=1
(1)n1n
x2+n2
f f(0) = ln 2
f(x) = +
0
cos xt
et+ 1dt
a f(x)ax2x+
f:x7→
+
n=0
ein2x
2nfRc
pNap=f(p)(0)
p!Gp:x7→
p
k=0
akxk
1 / 22 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !