Me2 - dynamique du point

publicité
Supplément EXERCICES – ME2 – Dynamique du Point – Feuille 1/2
Appliquer le PFS
Appliquer le PFD – Coordonnées Cartésiennes
Exercice 1 : Masse suspendue par deux ressorts ?
Exercice 3 : Distraction Polaire
Un objet considéré comme ponctuel, de masse m est
maintenu par deux ressorts identiques, liés à deux tiges verticales
distantes d’une longueur L. Les deux ressorts sont à spires non
jointives avec une constante de raideur k et une longueur libre l0.
Les points de fixation O1 et O2 sont situés à la même hauteur, et
la distance les séparant est L = O1O2 = 2l0. A l’équilibre, l’objet est
descendu d’une hauteur h par rapport à la ligne horizontale
O1O2.
Le pingouin Titus se laisse glisser sans vitesse initiale du
haut d’une pente verglacée de longueur d, inclinée d’un angle avec l’horizontale et dont l’extrémité inférieure se prolonge par
un replat, verglacé lui aussi. Le référentiel d’étude est le
référentiel terrestre, et on ne tiendra compte d’aucune force de
frottement.
1.
Etablir l’équation horaire du mouvement du centre
d’inertie G du pingouin dans la phase de descente. Quelle
est la nature de ce mouvement
2.
Quelle est la durée de la descente proprement dite ?
3.
Quelle est la nature du mouvement de G sur le replat ?
L = 2l0
O1
O2
(k,l0)
h
(k,l0)
Données : = 30°, d = 10m, g = 9,8m.s-2.
1. Faire l’inventaire des forces appliquées sur l’objet, et les
représenter sur un schéma.
Exercice 4 : Chute d’une goutte d’eau
2. Appliquer le PFS et trouver la relation liant les longueurs l1
et l2 des ressorts à l’équilibre.
On considère la chute verticale d’une goutte d’eau
sphérique dans l’atmosphère.
3. Déterminer alors la longueur l des ressorts en fonction de l0
et de h. Faire l’application numérique.
1. Au cours de sa chute, la goutte est soumise à une force de
frottement visqueux proportionnelle à sa vitesse v et de
valeur f
6S r Kv , avec r le rayon de la goutte et la
4. Déterminer une expression donnant la raideur k des ressorts
et calculer sa valeur.
Données : champ de pesanteur g0 = 9,81m.s-2, m = 190g, l0 =
10cm, h = 15cm.
On relie 2 ressorts bout à bout, comme sur la figure cidessous : le premier (k1, l10) est relié à un mur fixe, le second (k2,
l20) est relié à un point M de masse m que l’on écarte de la
position de repos (on notera AM = l). Trouver le ressort (k0, l0)
équivalent à cette association.
JG
l20
T
G
0
JJG
ez
M0
A0
A
k1
l2
B
k2
JJG
ex
B0
l1
l’équation
2. Déterminer la vitesse limite vlim atteinte par la goutte.
3. La goutte étant initialement au repos, exprimer la vitesse
v(t) à une date quelconque en fonction de vlim, t et
Exercice 2 : Association série de ressorts
l10
viscosité dynamique de l’air. Etablir
différentielle du mouvement de la goutte
JG
T
M
W
v lim . Tracer l’allure de v = f(t). Que représente ?
g
Calculer sa valeur numérique.
4. Au bout de quelle durée la vitesse limite est-elle atteinte à
1% près ? Calculer la distance parcourue par la goutte au
cours de cette durée.
Données ; masse volumique Ueau
1000kg .m 3 , r
K 18, 5.10 6 N .s .m 2 , pesanteur g
50 P m ,
9, 8 m .s 2
Exercice 5 : Robin des bois
2. Déterminer la constante de raideur k du ressort équivalent à
cette association en fonction de k1 et de k2.
Robin des bois est en mauvaise posture. Il tente de
s’enfuir en empoignant d’une main la corde qui supporte un
chandelier. De l’autre main, il sectionne la corde qui est
attachée au plancher et le chandelier tombe, ce qui propulse
Robin vers un balcon situé un peu plus haut. On néglige tous les
frottements.
3. Qu’est-ce que cela deviendrait si on mettait les deux ressorts
en “parallèle”, avec une même longueur à vide l0 ?
Æ Déterminer l’accélération prise par
Robin et la tension de la corde.
1. Définir le ressort idéal
Données :
- Masse de Robin m1=80kg
- Masse du chandelier m2=250kg
- Intensité de la pesanteur g = 9,8m.s-2.
Exercice 6 : Oscillation d’un ressort horizontal
JJG JJG JJG
Le référentiel ƒG
O , e x , e y , e z , t est supposé
galiléen. Un point matériel M de masse m est lié à un ressort
horizontal, l’autre extrémité du ressort étant fixe en A. Dans
son domaine d’élasticité, le ressort non tendu est caractérisé par
une constante de raideur k et une longueur à vide l0. Le point
G
M glisse sans frottement le long de l’axe 0, e x à partir de sa
position d’équilibre située en O. Il est repéré sur cet axe par son
abscisse
x OM .
ez
g
l0
k
A
JJG
JG
M
JJG
ex
JJG
ey
O
x
x
1.
Etablir l’équation différentielle du mouvement de M. En
déduire la pulsation propre 0 des oscillations.
2.
A l’instant t = 0, le point est abandonné sans vitesse initiale
du point M0 d’abscisse x0. Déterminer l’équation horaire
du mouvement x(t).
3.
JG
En déduire l’expression de la tension T du ressort.
Justifier son qualificatif de « force de rappel élastique ».
Exercice 7 : Oscillation d’un point relié à deux ressorts
JJG JJG JJG
Le référentiel ƒG
O , e x , e y , e z , t est supposé
galiléen. Un point matériel M de masse m est attaché à 2
ressorts (1) et (2) horizontaux, de raideurs k1 et k2, et de
longueurs à vide l01 et l02. reliés à deux points fixes A et B
distants de (l01+l02). Le point M glisse sans frottement le long de
G
l’axe 0, e x à partir de sa position d’équilibre située en O. Il
est repéré sur cet axe par son abscisse
l02
A
k2
x OM .
ez
(2)
M (1) k1
JJG
B
ey
O
x
x
JJG
ex
JJG
ex
ez
1. Calculer la vitesse vL atteinte par ce grimpeur à l’instant où
la corde commence à se tendre.
2. L’élasticité de la corde vaut E = 8% (sa longueur peut
augmenter de 8%). Entre le moment où la corde commence
à se tendre, et où elle atteint son maximum d’élasticité
(arrêt complet du grimpeur pour t = tB), on suppose qu’elle
le soumet à une tension constante. Son accélération totale
a0 est donc constante. Exprimez-la et calculez-la.
3. La résistance à la rupture de cette corde vaut 25kN (2,5
tonnes). Cette valeur est-elle suffisante pour enrayer la
chute ? La masse du grimpeur avec son équipement est m =
83kg. Une corde plus fine aurait-elle suffit ?
Exercice 9 : Le lob au tennis
Au tennis, un lob est réussi lorsque la balle passe audessus de l’adversaire et retombe avant la ligne de fond de court
(12m du filet). Le joueur 1, situé à d1 = 2m du filet (de hauteur
1m), tape la balle à une hauteur z0 = 30cm et lui communique
JJG
une vitesse v 0 contenue dans un plan vertical, de valeur
v0=36km.h-1, et formant un angle =60° avec l’horizontale. On
négligera les forces de frottement. On prendra g = 9,8m.s-2.
z
JG
JJG
k
v0
G
i
z0
O
filet
d1
x
d2
JG
g
1.
Justifier la position d’équilibre en O du point M.
2.
Etablir l’équation différentielle du mouvement de M. En
déduire la période T des oscillations et la raideur k du
ressort équivalent à cette association.
3.
JJG
A=O
JJG
l01
Tout le mouvement sera supposé vertical pour simplifier les
expressions.
A l’instant t = 0, le point est abandonné sans vitesse initiale
du point M0 d’abscisse x0. Déterminer l’équation horaire
du mouvement x(t).
Exercice 8 : Etude d’une corde d’escalade
Au cours de l’escalade d’une paroi rocheuse un grimpeur
effectue une chute libre sans frottement, sans vitesse initiale
d’une hauteur de L = 8m, avant que la corde de sécurité (L est sa
longueur au repos) fixée en A se tende. On donne g = 9,81 m.s-1.
1. Déterminer les équations horaires du centre d’inertie G de
la balle dans le repère
G JG
O , i , k représenté sur la figure.
(la balle est frappée à la date t = 0).
2. En déduire l’équation de la trajectoire de la balle.
3. La balle passe-t-elle au dessus du filet ?
4. Le joueur 2 est de l’autre coté du filet. Il tend sa raquette
verticalement pour essayer de toucher la balle : le tamis de
sa raquette est alors situé à une hauteur h = 2,3m. A quelle
distance du filet le joueur 2 doit-il se placer ?
5. Si le joueur 2 se trouve à une distance d2 = 4m du filet,
peut-il intercepter la balle ? Le lob est-il réussi ?
JG
6. Caractériser le vecteur vitesse v de la balle lors de son
impact sur le sol.
Supplément EXERCICES – ME2 – Dynamique du Point – Feuille 2/2
Exercice 10 : Saut à ski
Appliquer le PFD – Coordonnées Polaires
Un skieur aborde successivement les différentes parties
d’une pente dont le profil est schématisé ci-contre.
B
C
F
A
1.
D
E
Il remonte à vitesse constante la piste AB inclinée d’un
angle = 30° par rapport à l’horizontale. Il est tracté par la
perche d’un téléski qui exerce une force de traction ayant
même direction que la perche. Elle forme un angle = 20°
avec la pente. L’ensemble des forces de frottement
exercées par la neige sur les skis et l’air sur le skieur est
JJG
équivalent à une force unique F1 de valeur 65N, opposée
au mouvement. Calculer la valeur de la force de traction
exercée par la perche.
2.
Arrivé au sommet de la pente en B, il lâche la perche avec
une vitesse 3,2m.s-1. Il est alors sur une surface plane et
horizontale. Quelle distance va-t-il parcourir avant de
s’arrêter, en admettant que l’ensemble des forces de
frottement est équivalent à une force de valeur F2=42N ?
3.
Il aborde ensuite une pente CD inclinée d’un angle ’ = 35°
par rapport au plan horizontal. LA valeur des forces de
frottement ,e peut plus être considérée comme constante
et on admettra qu’elle est proportionnelle au carré de la
vitesse F3 = kv2, avec k = 0,56N.s-2.m-2. Quelle vitesse limite
vlim le skieur peut-il atteindre ?
4.
Il aborde un tremplin de saut EF incliné d’un angle =15°
par rapport à l’horizontale. Pour simplifier l’étude, on ne
prendra pas en compte les forces exercées par l’air. Par
ailleurs, on considérera que sa vitesse en F vaut 25m.s-1.
Calculer la longueur du saut s’il retombe sur une surface
plane et horizontale située à 5m au dessous de F.
Exercice 12 : Anneau sur un guide circulaire
Un anneau ponctuel M de
masse m est enfilé sur un cercle
fixe de centre O et de rayon b
placé horizontalement dans le
plan (Oxy). A l’instant initial t
JJG
= 0, une vitesse initiale v 0
tangente
au
cercle
communiquée à l’anneau
est
z
y
O
x
Æ En sachant que l’anneau glisse sans frottement, déterminer
JG
les composantes de la réaction R du guide.
Exercice 13 : Coulissement sur une tige en rotation
Une tige rectiligne horizontale (OX) tourne autour de l’axe
(Oz) à la vitesse angulaire constante Z T en restant dans le
plan (Oxy). Un anneau M de masse m est enfilé sur cette tige et
peut glisser sans frottement. On utilise les coordonnées polaires
(r(t), (t)) pour décrire le mouvement de M.
A l’instant t = 0, l’anneau démarre sans vitesse initiale par
rapport à la tige du point M0 repéré par les coordonnées polaires :
(0) = 0 et r(0) = r0.
. La résistance au mouvement de l’air est négligeable et le
JG
JJG
JG
champ de pesanteur uniforme : g g ˜ e z avec g
g ! 0.
z
JJG
ez
O
x
JJG
ex
JG
g
JJG
ey
M
JJG
eT
JJG
er
y
JJG
ey
O
JJG
y
JJG
ex
eT
JJG
e
X (tige) z
x
M JJG
JG e r
X (tige)
g
Données : masse du skieur m = 80kg, pesanteur g = 9,8m.s-2.
1.
Effectuer le bilan des forces appliquées au point M par le
milieu extérieur
2.
Ecrire le PFD dans le référentiel terrestre, projeté dans la
base cylindrique.
3.
En déduire l’équation de 2nd ordre vérifiée par r(t).
4.
Etablir les équations horaires r(t). En déduire l’équation
et l’allure de la trajectoire.
5.
Déterminer la réaction de la tige sur l’anneau en fonction
de t.
6.
L’anneau est maintenant soumis à une force de rappel par
l’intermédiaire d’un ressort de masse raideur k, de masse
négligeable et de longueur à vide r0. Le ressort est enfilé
sur la tige, une extrémité est fixée en O et l’autre est
attachée au point mobile M. Etablir l’équation
différentielle du mouvement de l’anneau lors de la
rotation de la tige et discuter de la nature de celui-ci. Les
CI sont inchangées.
Exercice 11 : Plan incliné
Un point matériel M, de masse m est lancée à l’instant t = 0
de l’origine O d’un support plan (Oxy) incliné d’un angle par
rapport à l’horizontal, et tel que l’axe (Ox) soit horizontal. Le
JJG
vecteur vitesse initial v 0 contenu dans le plan (Oxy) forme un
angle avec l’axe (Ox). Les frottements sur le support plan et
avec l’air sont négligés.
JJG
y
v0
x
O
1.
Ecrire le PFD appliqué à l’objet.
2.
En déduire les équations horaires du mouvement en
fonction de v0, g, et .
3.
Déterminer l’équation de la trajectoire suivie et sa nature.
4.
Examiner et commenter les cas limites = 0 et = /2
SOLUTION des EXERCICES – ME2 – Feuille 1/2
Exercice 3 : Distraction Polaire
Supplément EXERCICES – ME2
Æ Même problème que le plan incliné, on définit une base avec
JJG
L
O1
O2
JJG
T1
JG
e1
2. PFS dans
JG
JJG
ex
JJG
et
e2
ƒ
JJG
Base de projection :
JG
2
JJG JJJJJJJJJG
JJG
1.
JJJJJG
JJG
k2 l 2 l 20 ex
JJJJG JJJJJG JJJJJG JG
Elles sont toutes égales en norme : T1oB T2oB T2oM T
Et
Î
1
k eq
k1
Ÿ keq l l eq 0
Cela donne
k1 l l 10 k2 l l 20 keq
k1 k 2
Rmq : lois analogues à celle des condensateurs…
2d
g sin D
2s
se compensent, le pingouin est un
JJG JJG
(avec z descendant) terrestre
x , e z ,t
O ,e
JG
·
Puisque le mvt est vertical :
2.
JJG
mg ˜ e z
m
6S r K
mg
vz v z
6S r K
Vitesse limite vlim quand la dérivée est nulle = solution
particulière de l’équation avec second membre :
v lim
1
v z PART
k2
3.
3. Deux ressorts en parallèle de même l0 ?
JJJJJJG JJJJJG JJJJJG
Teq oM T1oM T2oM
JJJG
RN
dt ¹ƒ
JJG
1
et
PFD dans ƒ
JG
TeqoM T keq l1 l2 l10 l20 ex
JG JG
x c 0 Donc : m dv ¸ 6S r Kv
¸
On peut alors remplacer cette association par un seul ressort
JG
supposé galiléen, sur la goutte soumise à :
JJG 4
JJG
­ JG
S r 3 U eau g ˜ e z ,
°P m g ˜e z
® JG
JG 3
°f
6S r K v
¯
Et la force en M est T2oM
T
T T
keq k1 k2
m ˜ a M / ƒ
Exercice 4 : Chute d’une goutte d’eau
JJG
JG
JJG
ŸT keq l1 l10 l2 l20 ex
ª0 º
« »
¬RN ¼ B c
système pseudo-isolé. D’après le principe d’inertie, son
mouvement est donc rectiligne uniforme.
T1oB T2oB 0 k1 l1 l10 ex k2 l 2 l 20 ex
JJJJJJG JG
P
3. Sur le replat,
2. Au niveau du point B : on a les forces qui sont égales
(Projection du PFS sur B dans R galiléen) :
appliquant la force :
JG
2
k l1 l10 ex FRessort oB
JJJJG JJJJJG G
JJJJJJJJJJG
JG JG
P R
2. Durée de la descente proprement dite : t
mg 0
1. Ressort idéal : de masse négligeable et linéaire : par exemple
pour le ressort 1 ici, on aurait T1
JJG
1
gt 2 sin D
2
Î Mouvement rectiligne uniformément accéléré
x c t
Et
0
Exercice 2 : Association de ressorts
JJG
JJJG
R N RT
ª mg sin D º
ª0 º
ª mxc º
«
» « »
«
»
¬ mg cos D ¼ B c ¬ R N ¼ B c ¬ 0 ¼ B c
Ainsi : xc g sin D ,
x c gt sin D
l1 l 2
l 0 h 25cm
mg
mg 0 l
4. Et d’après le PFS : k
0
31 N .m 1
2 l l 0 sin D 2h l l 0 3. Th de Pythagore : l
JJG JJJG
§ 0, e c , e c ·
¨
x
y ¸
©
¹
JG
JJG
Æ Poids P mg ˜ e ªmg sinD º
«
»
z
¬mg cosD ¼B c
D’où :
0
­°l 1 l 2 l
Ϩ
°̄2k l l 0 sin D
z
Bc
PFD dans RG galiléen :
galiléen appliqué à l’objet :
JJG JJG G
ª0
º ªk l1 l 0 cos D º ªk l 2 l 0 cos D º
œ«
» «
»
» «
¬mg 0 ¼ƒ ¬«k l1 l 0 sin D ¼»ƒ ¬«k l 2 l 0 sin D ¼»ƒ
y
Æ Réaction Support : JG
R
JJG JJG
x , e z ,t
P T1 T 2
x
Système : Pingouin de centre d’inertie G de masse m
Bilan des forces :
des vecteurs unitaires suivant les ressorts
O ,e
G
P m g 0 mg 0 ˜ e z
JJG
JG
Æ Tension Ressort 1 : T1 k l 1 l 0 ˜ e 1
JJG
JJG
Æ Tension Ressort 2 : T 2 k l 2 l 0 ˜ e 2
JJG
Æ Poids
1. Inventaire des forces :
Avec
JJG
O
P
JG
haut. Les expressions sont alors simplifiées
JJG JJG JJG
1. Réf d’étude ƒ
O , e , e , e , t supposé galiléen.
ez
JJG
T2
JJJG
e x c tangent à la descente, vers le bas, et e y c normal vers le
Exercice 1 : Masse suspendue par deux ressorts ?
2 r 2 g U eau
9K
mg
6S r K
0.29 m .s 1
On réécrit l’équation différentielle avec vlim :
v lim
v v z
g z
v lim .
v lim ou encore Wvz v z v lim avec W
g
On résout : v t v 1 e lim
z
t
W
Æ Allure exponentielle.
W 0,03s est la constante de temps de l’exponentielle
(temps caractéristique du phénomène…),
4.
de la vitesse : z t z 0 vz t ˜dt z 0 vlimt vlimWe
Système : Point M de masse m
Base de projection : cartésienne (celle du réf)
JG
JG
JJG
Bilan des forces :
Æ Poids P m g m g ˜ e z
JG JJJG JJG
JJG
Æ Réaction Support : R R R
RN ˜ e z
N
T
JJG
JJG
­
Æ Tensions Ressorts : °T 1 k 1 l 1 l 0 1 ˜ e x
JJG
® JJG
°̄T 2 k 2 l 2 l 0 2 ˜ e x
JJG
JJG
­
Ÿ T1 k1x ˜e x
Mais ° l 1 l 0 1 x
JJG
JJG
®
Ÿ T 2 k 2x ˜e x
°̄ l 2 l 0 2 x
t
t
W
0
Elle parcourt : d vlim u5W vlimWe5 3.5cm
Exercice 5 : Robin des bois
PFD sur Robin dans R galiléen :
JJG JJG
P1 T1
PFD sur le chandelier dans R galiléen :
JG
m1 ˜ a1
JJG JJG
P2 T 2
JJG
m2 ˜ a2
JG
JJG
­°a1 a 2
La corde est inextensible sans frottement, donc JJG
JJG
®
°̄T 2 T1
PFD dans RG galiléen :
­m1g T m1 ˜ a
ŸT m1 ˜ a g m2 ˜ a g ¯m2 g T m2 ˜ a
m2 m1
˜ g 5m.s 2
m2 m1
2m1m2
˜ g 1200N
m2 m1
Ce qui nous donne
Et la tension
PFD dans RG galiléen :
JG
P T R
Et
x k
l l 0 x Z02 x
m
1.
°̄x 0
JJG
kx ˜ e x
x0 A
0 BZ0
JJG
kx 0 cos Z0t ˜ e x
0 BZ0
k1 k2 m
A, B \
Ÿ x t x 0 cos Z0t JJG JJG
x , e z ,t
O ,e
- Référentiel d’étude : ƒ
- Système étudié : le grimpeur
- Base de projection : on reste en cartésienne
JG
- Bilan des Forces : P
JJG
­
x t
Et on intègre : ° ®
°z t ¯
k
m
­ x t Æ Il s’agit bien d’une force élastique : qui ramène le pt à sa
position d’équilibre x = 0.
Exercice 7 : Oscillation d’un point relié à deux ressorts
1. Position d’équilibre : On peut le voir directement Æ Si x = 0,
alors les ressorts n’appliquent pas de tension, le point est
immobile dans le référentiel galiléen…
Ou on le démontre avec le PFS… un peu plus long…
ªmx º
« »
¬mz ¼ ƒ
ª0 º
«
»
¬mg 0 ¼ ƒ
x 0 ³ x t ˜ dt
0
z 0 ³ z t ˜ dt
gt
t
0
t
0
0
z 0 ³ z t ˜ dt
1 2
gt
2
t
0
®
°z t ¯
JJG
mg0
x 0 ³ x t ˜ dt
Et encore °
t
0
La corde commence à se tendre pour z t L
Ÿ x t x 0 cos Z0t ­T 0 si x ! 0
Ÿ®
¯T ! 0 si x 0
JJG
mg 0 ˜ e z
mg0
- PFD dans R galiléen : maG
A, B \
2. Même méthode que dans l’exercice précédent :
x0 A
Méthode complète :
2. On résout l’équation :
­x 0
Et avec les CI : °
®
m
°̄x 0
ª mx º
«
»
¬0 ¼ ƒ
0 , avec Z0
x t A cos Z0t B sin Z0t ,
ª m x º
«
»
¬0 ¼ƒ
x Z02x 0 , avec Z0
­x 0
Et avec les CI : °
®
JJJJJJJJJJG
m ˜ a M / ƒ
ª k l l 0 º
ª0
º
ª0 º
D’où :
» « »
«
» «
¬ mg ¼ ƒ ¬« 0
¼» ƒ ¬ R N ¼ ƒ
k1 k2 x
x t A cos Z0t B sin Z0t ,
Système : Point M de masse m
Base de projection : cartésienne (celle du réf)
JG
JG
JJG
Bilan des forces :
Æ Poids P m g m g ˜ e z
JG JJJG JJG
JJG
Æ Réaction Support : R R R
RN ˜ e z
N
T
JG
JJG
Æ Tension Ressort : T
k l l 0 ˜ e x
JG
m ˜ a M / ƒ
Exercice 8 : Etude d’une corde d’escalade
O , e x , e y , e z , t supposé galiléen.
JG
JJJJJJJJJJG
JG
3. Même résolution pour l’équation, mais avec le 0 différent :
Exercice 6 : Oscillation d’un ressort horizontal
JJG JJG JJG
x Et
Attention, il ne s’agit as tout à fait de la différence des forces
appliquées par Robin et par le chandelier, car le mouvement
de Robin « soulage » la corde… On n’est pas en statique ici.
1. Réf d’étude ƒ G
JJG JJG
ª k 1 k 2 x º
º
ª0 º
» «
«
» «
»
m
g
»¼ ƒ ¬ R N ¼ ƒ
¬
¼ ƒ «¬ 0
a
T
JG
P T1 T 2 R
D’où : ª 0
Ainsi : ®
JG
supposé galiléen.
Réf d’étude ƒ G
³
3. T
JJG JJG JJG
x ,e y ,e z ,t
O , e
vlim atteinte à 1% près au bout de 5 = 0,15s.
Distance parcourue par la goutte : On intègre l’expression
2L et v
L
Donc pour t
L
2.
g
gt L
L
1 2
gt
2
12.5m .s 1
2 gL
On veut que le grimpeur s’arrête à la limite d’élasticité de
la corde. On calcule donc la vitesse avec la nouvelle
accélération a0 (action conjuguée de la pesanteur et de la
JG
JJG
T 0 ˜ e z . Pour t ! t L :
corde de tension T
G
ma
­z t Et °
®
°z t ¯
ªmx º
« »
¬mz ¼ ƒ
JJG
ª0 º JG
«
» T mg0
¬ma0 ¼
ª0
º
«
»
mg
T
¬ 0 0 ¼ƒ
z t L ³ zt ˜dt v L a0 t t L t
tL
1
2
z t L ³ z t ˜dt L v L t t L a0 t t L t
tL
2
SOLUTION des EXERCICES – ME2 – Feuille 2/2
2
1
­
En tB : °z t B L 1 E L v L t B t L a0 t B t L 2
®
°z t B 0 v L a0 t B t L ¯
1
­
Cela donne : °° LE 2 v L t B t L ®
v 2
°a
L
122.6 m .s 2
0
°̄
2 LE
3.
mg 0 ma0
T0
On a
m g 0 a0 | 10,99kN
Exercice 11 : Plan incliné
Idem plan incliné mais avec une condition initiale
différente : PFD sur l’objet en réf galiléen…
ª0
«
»
«¬ mg cos E »¼
ƒ
.
­x 0
¯y g sin E
Ainsi : ®
La corde va résister et arrêter la chute du grimpeur. On aurait
d’ailleurs pu se satisfaire ici d’une corde un peu plus fine… 1,1
tonnes de résistance aurait suffit, mais il vaut toujours mieux
avoir un peu de marge dans ces cas-là !!!
­ x t °
®
° y t ¯
Et
Exercice 9 : Le lob au tennis
­
°x v0t cosD
°
®y 0
°
1
°z gt 2 v0t sinD z0
¯
2
­x v 0 cosD
°
®y 0
°z gt v sinD
0
¯
x 0 v 0t cos D
1
2
y t v 0t sin D gt 2 sin E
x
­
°t v cos D
0
Æ Parabole
Trajectoire : °
®
2
E
sin
gx
°y x ˜ tan D °̄
2v 02 cos2 D
1. La méthode est rigoureusement la même que pour l’exercice
de ballistique. On a avec le PFD en réf galiléen :
­ x 0
°
® y 0
°z g
¯
ª0 º
ª mx º
»
« »
« »
« my »
«¬ R N »¼
«¬ 0 »¼
ƒ
ƒ
­°x t v 0 cos D
®
°̄ y t v 0 sin D gt sin E
º
D’où : « mg sin E » « 0
Cas limites = 0 : mouvement horizontal Æ rectiligne uniforme
Et = /2 : mouvement vertical Æ balistique
2. Trajectoire : on élimine le temps :
z
g
2v 0 2 cos 2 D
x 2 x ˜ tan D z 0
3. Au niveau du fil, x = d1 = 2m Æ z = 3m > 1m, la balle passe.
4. On trouve la distance x1 entre le joueur 1 et le joueur 2 en
imposant h dans l’équation de la trajectoire : 2 solutions :
Æ x1’ = 1,4m ne convient pas, car dans le terrain du joueur 1
Æ x1’’ = 7,5m convient, le joueur 2 doit donc se placer à 5,5m
du filet
5. Si d2 = 4m, il est trop près du filet, le lob réussi si la balle
atterri dans le court, donc si pour z = 0, x < 14m. On vérifie que
cela fonctionne : x(z=0) = 7m
­v
v 0 cos D 5m .s 1
6. A l’impact : ° x
gx
®
1
°v z v cos D v 0 sin D 9 m .s
0
¯
Norme de la vitesse : v
v x 2 v z 2 10, 3 m .s 1
Angle avec le sol : tan E
vz
vx
1, 8
ŸE
61 q
Exercice 10 : Saut à ski
Bien penser à faire l’inventaire des forces pour chacune des
phases, et un PFD dans le référentiel terrestre qui peut être
supposé galiléen…
Solutions :
F 1 mg sin D
1. Tension de la perche T
cos E
2. Distance parcourue x x 0 9, 8 m
3. Vitesse limite v
lim
P sin D c
k
486 N
28, 3 m .s 1
4. Même problème que la balistique : on injecte y = -5m dans
l’équation de la trajectoire : équation du second degré à
résoudre, qui nous donne x1 = 46,3m.
Exercice 12 : Anneau sur un guide circulaire
JJG JJG JJG
Référentiel d’étude terrestre : ƒ
O , e x , e y , e z ,t
JJG JJG JJG
Base de projection : Polaire B POL
e r , eT , e z
Toute réaction d’un support (surface ou ligne) se décompose en
une composante normale à la surface ou à la ligne, modélisant le
fait que l’objet ne peut pas pénétrer dans le support, et une
composante tangentielle, modélisant les frottements (négligés
ici) :
donc JG
JJJG JJG
R N RT
R
Bilan des forces :
JJJG
RN
Æ Poids :
ªRr º
« »
«0 »
«¬ R z »¼
POL
JG
JG
P
Æ Réaction
JG
mg
JJJG
R
JG JJJG
PFD sur M dans R supposé galiléen : P RN
RN
JJG
mg ˜ e z
JJJJJJJJJJG
m ˜ a M / ƒ .
Æ On sait déjà que le point ne peut pas quitter le guide,
donc r est constante et z aussi
Æ On sait aussi en coordonnées polaires, dans notre cas,
que : JJJJJJJJJJG
v M / ƒ Donc ª 0
º
ªR r º
«
»
« »
0
«
»
«0 »
«¬ mg »¼
«¬ R z »¼
POL
POL
ª r º
« »
«r T »
« z »
¬
¼
JJG
r T ˜ e T
PO L
ª r r T 2 º
«
»
m « 2 rT r T»
«
»
«¬ z
»¼ POL
­
Cela nous donne : °°v cstte v 0
®R z m g
°
2
°R r m v
b
¯
JG
ª mv 2 º
«
b »»
«
« m dv »
« dt »
«
»
«0
»
«¬
»¼ POL
JJG mv 2 JJG
0
˜er ,
R mg ˜ e z b
Exercice 13 : Coulissement sur une tige en rotation
JJG JJG JJG
Référentiel d’étude terrestre : ƒ
O , e x , e y , e z ,t
1. Réf d’étude ƒ G
JJG JJG JJG
O ,e x ,e y ,e z ,t
supposé galiléen.
Système : Point M de masse m
Base de projection : cylindrique
JG
Bilan des forces :
Æ Poids P
BCYL
JG
mg
JG
Æ Réaction Support : R
JG
JG
P R
2. PFD dans RG galiléen :
JJG
JJG
JJG
RN ˜ e z
Ou encore
Résolution : on voit 2 cas apparaître
JJJJJJJJJJG
m ˜ a M / ƒ
ªrrT2 º
ªrrZ2 º
ª0 º
ª0 º
«
»
«
»
D’où : «0 » «R »
m«2rT rT»
m«2rZ »
«
»
« NT »
«z
»
«
»
«¬mg »¼
«R »
¬0
¼BCYL
BCYL ¬ Nz ¼BCYL
¬
¼BCYL
­ r Z
3. Equations : °
®
k
r r0 0
m
k
§k
·
r ¨ Z 2 ¸ r
r
m 0
©m
¹
r Z 2 r m g ˜e z
R N RT
ªrrZ2 º
ª0 º
ªr r0 º
«
»
« »
«
»
«RNT » k «0 »
m«2rZ »
«0
»
«R »
«¬0 »¼
¬
¼BCYL
BCYL ¬ Nz ¼BCYL
BCYL
ª0 º
«
»
«0 »
«¬mg »¼
Ce qui nous donne la nouvelle équation différentielle :
JJG JJG JJG
e r , eT , e z
JJJG
6. On rajoute un ressort dans le PFD :
2
Cas 1 : si k ! Z 2 , alors le ressort ramène le point autour
m
de la position en r = r0. On a des ondulations autour de
cette position :
r t k
r A cos Zt B sin Zt , A, B  \ …
k mZ2 0
r 0 , mais on ne peut rien faire avec
°̄ 2mrZ R N T
y
la seconde, car on ne connaît pas RN.
4. On en déduit l’expression de r(t) : (cas peu fréquent d’éq diff)
r t A cosh Zt B sinh Zt ,
x
A, B  \
O
Avec les cosinus et sinus hyperboliques, définis par
cosh Zt Zt
e e
Zt
et sinh Zt 2
­°r 0 r0 A
Et avec les CI : ®
°̄r 0 0 BZ
Zt
e e
Zt
2
Ÿ r t r0 cosh Zt Æ On trouve une solution divergente, qui ressemble à une
­°r t r0 cosh Zt spirale logarithmique, avec ®
°̄T t Zt
­RNT
5. Réaction de la tige : °
®
2mrZ 2mr0Z2 sinhZt °̄RNz mg
Æ Plus le point s’éloigne et plus la tige doit fournir
d’effort pour maintenir la rotation.
Allure de la courbe :
y
x
O
Cas 2 : si k Z 2 , alors le ressort ne suffit pas à ramener le
m
point autour d’une quelconque position d’équilibre, la
solution reste en cosinus hyperbolique, et elle diverge de la
même manière.
Téléchargement