FR3
0R3= (0,0,0) F0+2·0=0
u= (x, y, z)F u0= (x0, y0, z0)F
u+u0= (x+x0, y +y0, z +z0)
(x+x0) + 2(y+y0)=(x+ 2y)+(x0+ 2y0) = 0 + 0 = 0,
u+u0F
u= (x, y, z)F λ Rλu = (λx, λy, λz)
(λx) + 2(λy) = λ(x+ 2y) = λ·0=0,
λu F
FR3
x+ 2y= 0 x=2y,
F= Vect(2,1,0),(0,0,1).
FR4
0R4F0 + 0 + 0 = 0 + 0 + 0 = 0
u= (x, y, z, t)F u0= (x0, y0, z0, t0)F
u+u0= (x+x0, y +y0, z +z0, t +t0)
(x+x0)+(y+y0)+(t+t0)=(x+y+z)+(x0+y0+z0) = 0 + 0 = 0,
(y+y0)+(z+z0)+(t+t0)=(x+y+z)+(x0+y0+z0) = 0 + 0 = 0,
u+u0F
u= (x, y, z, t)F λ Rλu = (λx, λy, λz, λt)
(λx)+(λy)+(λz) = λ(x+y+z) = λ·0 = 0,
(λy)+(λz)+(λt) = λ(y+z+t) = λ·0 = 0,
λu F
FR4
x+y+z= 0
y+z+t= 0 x=t
y=zt
F= Vect(1,1,0,1),(0,1,1,0).
FR[X]
0R[X]FR1
10dt = 0
P, Q F
Z1
1
(P+Q)(t)dt =Z1
1
P(t)dt +Z1
1
Q(t)dt = 0 + 0 = 0,
P+QF
PF λ R
Z1
1
(λP )(t)dt =λZ1
1
P(t)dt =λ·0=0,
λP F
FR[X]
F(a, b, c, d)R4
a(1,1,0,1) + b(1,1,1,1) + c(1,0,1,1) + d(0,1,1,1) = (0,0,0,0)
(a+b+c, a+b+d, b c+d, a +bc+d) = (0,0,0,0).
a+b+c= 0
a+b+d= 0
bc+d= 0
a+bc+d= 0.
a=b=c=d= 0
F F 4R4
4FR4
Fa
1 2 1
11 0
0 2 a
a2
Fa
a6= 2
F(a, b, c)R3
aX(X1) + bX(X2) + c(X1)(X2) = 0
(a+b+c)X2(a+ 2b+ 3c)X+ 2c= 0.
a+b+c= 0
a+ 2b+ 3c= 0
2c= 0
a=b=c= 0 F
F3R2[X]
3FR2[X]
f u = (x, y, z)R3u0= (x0, y0, z0)R3
λR
f(u+λu0) = f(x+λx0, y +λy0, z +λz0)
=(x+λx0)+(y+λy0)+(z+λz0),(x+λx0)(y+λy0)(z+λz0)
= (x+y+z, x yz) + λ(x0+y0+z0, x0y0z0)
=f(x, y, z) + λf(x0, y0, z0) = f(u) + λf(u0).
f
f
f(x, y, z) = (0,0) x+y+z= 0
xyz= 0 x= 0
y=z,
Ker(f) = Vect(0,1,1)
Im(f) = Vectf(1,0,0), f(0,1,0), f(0,0,1)
= Vect(1,1),(1,1),(1,1)=R2.
f P, Q R2[X]λR
f(P+λQ)=(P+λQ)(0) + (P+λQ)(1)
= (P(0) + P(1)) + λ(Q(0) + Q(1))
=f(P) + λf(Q).
f
f P =aX2+bX +c
f(P)=0 a+b+ 2c= 0.
Ker(f) = Vect(2X21, X2X)
Im(f) = Vectf(1), f(X), f(X2)= Vect2,1,1=R.
f P, Q R3[X]λR
f(P+λQ)=(P+λQ) + (1 X)(P+λQ)0
= (P+ (1 X)P0) + λ(Q+ (1 X)Q0)
=f(P) + λf(Q).
f
f P =aX3+bX2+cX +d
f(P)=0 aX3+bX2+cX +d+ (1 X)(3aX2+ 2bX +c)=0
⇔ −2aX3+ (3ab)X2+bX + (c+d)=0
⇔ −2aX3+ (3ab)X2+bX + (c+d)=0.
a= 0
b= 0
c=d,
Ker(f) = Vect(X1)
Im(f) = Vectf(1), f(X), f(X2), f (X3)
= Vect1,1,2XX2,3X22X3
= Vect1,2XX2,3X22X3.
X1,1,2XX2,3X22X3
(X1) Ker(f) (1,2XX2,3X22X3) Im(f)
R4[X]R4[X] = Ker(f)Im(f)
0 1 1
1 0 1
111
,
1 0 1
4 1 3
2 1 2
,
1 0 1
2 1 3
1 0 2
.
M= I3+N
N=
0 1 0
0 0 1
0 0 0
.
N N3= 0 I3
Mn= (I3+N)3= In
3N0+nIn1
3N+n
2In2
3N2
= I3+nN +n(n1)
2N2
=
1n n(n1)/2
0 1 n
0 0 1
.
rang(M) = 2
Ker(M) = Vect
4
1
3
,Im(M) = Vect
1
1
0
,
1
2
3
.
rang(M)=1
Ker(M) = Vect
1
1
0
,
0
1
1
,Im(M) = Vect
1
1
1
.
rang(M)=2
Ker(M) = Vect
1
2
1
,Im(M) = Vect
1
4
7
,
2
5
8
.
1
a=±1 4
MatC(u) =
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0
.
u P, Q R3[X]λR
u(P+λQ)=(P+λQ)+(P+λQ)0(X+ 1)
= (P+P0(X+ 1)) + λ(Q+Q0(X+ 1))
=u(P) + λu(Q).
u
MatC(u) =
1 1 2 3
0 1 2 6
0 0 1 3
0 0 0 1
.
4u
Ker(MI4) = Vect
1
0
0
0
.
Ker(uId) = Vect(1).
MI4
Im(MI4) = Vect
1
0
0
0
,
2
2
0
0
,
3
6
3
0
.
Im(uId) = Vect(1,2+2X, 3+6X+ 3X2).
MatC(u) = 12
1 4 .
u(2,1) = (4,2) = 2 ·(2,1) + 0 ·(1,1),
u(1,1) = (3,3) = 0 ·(2,1) + 3 ·(1,1),
MatB(u) = 2 0
0 3.
MatC(un) = PCB·MatB(un)·PBC.
PCB=2 1
11, PBC=P1
CB=1 1
12
MatB(un) = MatB(u)n=2n0
0 3n.
MatC(un) = 2n+1 3n2n+1 2·3n
3n2n2·3n2n,
un(x, y) = (2n+1 3n)x+ (2n+1 2·3n)y, (3n2n)x+ (2 ·3n2n)y.
B0B
MatB(B0) =
1 1 1
0 1 1
1 0 1
.
B0E
f(u) = f(i+k) = f(i) + f(k) = k+i+ 2k=i+k=u
f(v) = f(i+j) = f(i) + f(j) = k+i+j+k=i+j=v
f(w) = f(i+j+k) = f(i) + f(j) + f(k)=2i+j+ 2k=u+w.
MatB0(u) =
101
010
001
.
An= MatB(un) = PBB0·MatB0(u)n·PB0B.
PBB0=
1 1 1
0 1 1
1 0 1
, PB0B=P1
B0B=
11 0
1 0 1
1 1 1
MatB0(un) = MatB0(u)n=
1 0 n
0 1 0
0 0 1
.
An=
1n n n
0 1 0
n n n + 1
.
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !