FR3
•0R3= (0,0,0) ∈F0+2·0=0
•u= (x, y, z)∈F u0= (x0, y0, z0)∈F
u+u0= (x+x0, y +y0, z +z0)
(x+x0) + 2(y+y0)=(x+ 2y)+(x0+ 2y0) = 0 + 0 = 0,
u+u0∈F
•u= (x, y, z)∈F λ ∈Rλu = (λx, λy, λz)
(λx) + 2(λy) = λ(x+ 2y) = λ·0=0,
λu ∈F
FR3
x+ 2y= 0 ⇔x=−2y,
F= Vect(−2,1,0),(0,0,1).
FR4
•0R4∈F0 + 0 + 0 = 0 + 0 + 0 = 0
•u= (x, y, z, t)∈F u0= (x0, y0, z0, t0)∈F
u+u0= (x+x0, y +y0, z +z0, t +t0)
(x+x0)+(y+y0)+(t+t0)=(x+y+z)+(x0+y0+z0) = 0 + 0 = 0,
(y+y0)+(z+z0)+(t+t0)=(x+y+z)+(x0+y0+z0) = 0 + 0 = 0,
u+u0∈F
•u= (x, y, z, t)∈F λ ∈Rλu = (λx, λy, λz, λt)
(λx)+(λy)+(λz) = λ(x+y+z) = λ·0 = 0,
(λy)+(λz)+(λt) = λ(y+z+t) = λ·0 = 0,
λu ∈F
FR4
x+y+z= 0
y+z+t= 0 ⇔x=t
y=−z−t
F= Vect(1,−1,0,1),(0,−1,1,0).
FR[X]
•0R[X]∈FR1
−10dt = 0
•P, Q ∈F
Z1
−1
(P+Q)(t)dt =Z1
−1
P(t)dt +Z1
−1
Q(t)dt = 0 + 0 = 0,
P+Q∈F
•P∈F λ ∈R
Z1
−1
(λP )(t)dt =λZ1
−1
P(t)dt =λ·0=0,
λP ∈F
FR[X]
F(a, b, c, d)∈R4
a(1,−1,0,1) + b(1,1,1,1) + c(1,0,−1,−1) + d(0,1,1,1) = (0,0,0,0)
⇔(a+b+c, −a+b+d, b −c+d, a +b−c+d) = (0,0,0,0).