E=K3F={(x, y, z)∈K3|x+y+ 2z= 0}G={(x, y, z)∈K3|y−z= 0}
F G F +G F ∩G
~u = (1,1,1) ~v = (1,2,3) ~w = (a, a2, a3)R3
a(~u, ~v, ~w)
R4a= (3,2,1,4) b= (1,1,1,3) c= (4,2,0,2) d= (−1,0,1,2) e= (0,3,2,1)
U= (a, b, c, d, e)
(a, b, c)
(a, c, d)
U
UR4
F= (a, b, c)G= (d, e)F G
UF+G F +G
F∩G F ∩G
B= (−1,3 + X, 5+4X2,2X2, X +X2+X3)R3[X]
fR4R3f(x, y, z, t)=(x+y, z −t, x +t)
f(f)f(f)
fR4R3
f∈ L(K3)f(1,0,0) = (0,1,2), f(0,1,0) = (−1,1,1) f(0,0,1) = (2,0,0) f
K3
F a = (−2,0,1) b= (−1,1,0)
G c = (1,0,0)
d= (0,1,1)
F+G a, b, c d
(a, b, c)F+G
(F∩G) = 1
(x, y, z)R3F∩G(x+y+ 2z+ 0
y−z= 0 ⇐⇒ (y=z
x=−3z
F∩G= ((−3,1,1))
~u, ~v ~w p, q, r
p~u+q~v+r ~w =~
0⇐⇒
p+q+ra = 0
p+ 2q+ra2= 0
p+ 3q+ra3= 0
⇐⇒
p+q+ra = 0
q+r(a2−a)=0
2q+r(a3−a)=0
⇐⇒
p+q+ra = 0
q+ra(a−1) = 0
ra(a2−1) −2ra(a−1) = 0
q⇐⇒
p+q+ra = 0
q+ra(a−1) = 0
ra(a−1)2= 0
a= 0 a= 1