∀i∈ {1,··· , p}:R(vi) = fi
∀(i, j)∈ {1,2,···}2:vi(xj) = (1i=j
0i6=j
V p
v∈V
x∈X
f(x)6= 0 ⇔x∗(f)6= 0
x∗V∗(x∗)
(x1,··· , xq)
(x∗
1,··· , x∗
q)
∀x∈X: (x∗
1,··· , x∗
q, x∗)
(x∗
1,··· , x∗
q)V∗p
V q ≤p
x∈X
x∗∈Vect x∗
1,··· , x∗
q
∀x∈X, ∃(λ1(x),··· , λq(x)) ∈Cqx∗=λ1(x)x∗
1+··· +λq(x)x∗
q
(λ1,··· , λq)XC
v∈V
∀x∈X, ∀v∈V:x∗(v) = λ1(x)x∗
1(v) + ··· +λq(x)x∗
q(v)
∀x∈X, ∀v∈V:v(x) = λ1(x)v(x1) + ··· +λq(x)v(xq)
∀v∈V:v=v(x1)λ1+··· +v(xq)λq
v∈Vect(λ1,··· , λq)
v∈Vdim V=p≤q p =q
(x∗
1,··· , x∗
p)V∗
PΦn(x1,··· , xn)
L= (X−x1)···(X−xn)
Φ
PΦ
L Q n −2
P=LQ
P0=LQ0+L0Q
∀i∈ {1,··· , n}−{k}: 0 = f
P0(xi) = e
L(xi)
=0 f
Q0(xi) + e
L0(xi)
6=0 e
Q(xi)
n L n Q
n−1
δij 1i=j0i6=j
Li(xj) = δij
(L1,··· , Ln)n= dim Rn−1[X]
λ1L1+··· +λnLn
xiX i
λi= 0
P(L1,··· , Ln)
(e
P(x1),··· ,e
P(xn))