gn
[0,+[ [1,+[a > 1
αn>0gn(αn) = a
gn+1 gn
gn+1(αn) = gn(αn)+(n+ 1)αn+1
n=a+ (n+ 1)αn+1
n> a
gn+1 αn+1 < αn
gn(1) = 1 + 2 + ··· +n(gn(1))nN+
N gN(1) > a gN
αN<1
nN:αnαN<1
(αn)nNα
αnαN<1nN
0ααN<1
(npqn)nN
0p|q|<1
αn
αN
gn(x) = f0
n(x)fn(x) = 1xn+1
1x
fn
0 (xn)nN(nxn)nN
(gn(x))nN1
(1 x)2
(gn(x))nNn x
gn(x)1
(1 x)2
n α αngn
gn(α)gn(αn) = a
1
(1 α)2a
β= 1 1
a
n
gn(β)1
(1 β)2=a
gnβαnβ(αn)nN
βα x 1
(1x)2αβ
α=β= 1 1
a
x=αna= 4 1 αn=1
2(1 εn)
4 = 1
(1 αn)2(n+ 1) αn
n
1αnα2
n
(1 αn)n+1
4(1 αn)2= 1 (n+ 1)αn
n(1 αn)αn+1
n
(1 εn)2= 1 (n+ 1)1εn
2αn
nαn+1
n
⇒ −2εn+ε2
n=(n+ 1)1εn
2αn
nαn+1
n
αn1
2εn0
ε2
nεn
αn+1
n(n+ 1)αn
n
2εn∼ −1εn
2(n+ 1)αn
n
1εn
2(n+ 1)αn
n∼ −1
2n
n
εn1
4n
n
n1
4n2αn
n0
(1 + εn)n1
(1 + εn)n=enln(1+εn)nln(1 + εn)n0
εnn
4
1
2n(1 + εn)nn
2n+2
q X y X
fyX
xX:fy(x) = (1x=y
0x6=y
X={y1, y2,··· , yq}
f∈ F(X, C)
f=f(y1)fy1+f(y2)fy2+··· +f(yq)fyq
fy1, fy2,··· , fyq
F(X, C)
dim (F(X, C)) = q
pq
p V F(X, C)
dim (F(A, C)) = p= dim V
R
R
fker R X C
A
0X A
xXA xV
(x
1,··· , x
p)Vλ1,··· , λpC
x=λ1x
1+··· +λpx
p
fV
x(f) = λ1x
1(f) + ··· +λpx
p(f)
f(x) = λ1f(x1) + ··· +λpf(xp) = 0
f A
f1,··· , fpA
(i, j)∈ {1,··· ,}2:fi(xj) = (1i=j
0i6=j
(f1,··· , fp)F(A, C)R
V
(v1,··· , vp)
i∈ {1,··· , p}:R(vi) = fi
(i, j)∈ {1,2,···}2:vi(xj) = (1i=j
0i6=j
V p
vV
xX
f(x)6= 0 x(f)6= 0
xV(x)
(x1,··· , xq)
(x
1,··· , x
q)
xX: (x
1,··· , x
q, x)
(x
1,··· , x
q)Vp
V q p
xX
xVect x
1,··· , x
q
xX, (λ1(x),··· , λq(x)) Cqx=λ1(x)x
1+··· +λq(x)x
q
(λ1,··· , λq)XC
vV
xX, vV:x(v) = λ1(x)x
1(v) + ··· +λq(x)x
q(v)
xX, vV:v(x) = λ1(x)v(x1) + ··· +λq(x)v(xq)
vV:v=v(x1)λ1+··· +v(xq)λq
vVect(λ1,··· , λq)
vVdim V=pq p =q
(x
1,··· , x
p)V
PΦn(x1,··· , xn)
L= (Xx1)···(Xxn)
Φ
PΦ
L Q n 2
P=LQ
P0=LQ0+L0Q
i∈ {1,··· , n}−{k}: 0 = f
P0(xi) = e
L(xi)
=0 f
Q0(xi) + e
L0(xi)
6=0 e
Q(xi)
n L n Q
n1
δij 1i=j0i6=j
Li(xj) = δij
(L1,··· , Ln)n= dim Rn1[X]
λ1L1+··· +λnLn
xiX i
λi= 0
P(L1,··· , Ln)
(e
P(x1),··· ,e
P(xn))
xjΛiΛi(xj) = 0 i6=k
xixk
Λ0
i(xj) =0 j6=j6=k
Λ0
i(xi) =(xixk)Y
j∈{1,··· ,n}−{i,k}
(xixj)2j=i
Λ0
i(xk) =(xkxi)Y
j∈{1,··· ,n}−{i,k}
(xkxj)2j=k
2n2 = dim E
l1L1+···lnLn+λ1Λ1+···λnΛn= 0
xili
L xii6=k λi
T
T=l1L1+···lnLn+λ1Λ1+···λnΛn
T xi
l1=··· =lk= 1 lk+1 =··· =ln= 0
S=L1+··· +Lk
T0xi
i6=k
λi=S0(xi)
Λ0
i(xi)
T
2n2Lin1 Λi2n2
T0n1xii6=k
x1x2x2x3
xk1xkT
k1ξ1,··· , ξk1
x1< ξ1< x2< ξ2< x2<··· < xk1< ξk1< xk
xk+1, . . . , xn0
nk1ξk+1,··· , ξn1
xk+1 < ξk+1 < xk+2 < ξk+2 < xk+2 <··· < xn1< ξn1< xn
T02n3 2n3
T0T0
x1max &ξ1min x2max &ξ2min ··· xk1max &ξk1min (1)
x1min %ξ1max x2min %ξ2max ··· xk1min %ξk1max (2)
xk+1 max &ξk+1 min ··· xn1max &ξn1min xnmax (3)
xk+1 min %ξk+1 max ··· xn1min %ξn1max xnmin (4)
xk
T0
]ξk1, xk+1[
T xk
T(xk)=1 T(xk+1) = 0
T ξk1
xk+1
(2) (4)
T
], x1[ ]xn,+[T(x1)=1 T(xn)=0
xx1:T(x)1xxn:T(x)0
T
xiT0
T
+T
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !