A
B P (A) = 0.001
PA(B) = 0.95 P¯
A(B) = 0.005 B
P(B) = P(A)×PA(B) + P(¯
A)×P¯
A(B) = 0.001 ×0.95 + (1 0.001) ×0.005 =
0.005945 PB(A)
PB(A) = P(A)×PA(B)
P(B)=0.95 ×0.001
0.005945 '0.16
1 000 5
32
55 32 A
|A|= 28 4
28 P(A) = 28
32
5'0.00014 B
PB(A)P(B)
|B|=4
2×28
3+4
3×28
2+ 28
PB(A) = P(AB)
P(B)=P(A)
P(B)=28
4
2×28
3+4
3×28
2+ 28 '0.0013
32
4
2×28
1
32
3'0.033
S P G
A B
PA(S)=1PA(G)
PA(P) = 10.160.6 = 0.24 PB(S) = 0.2P(S) = P(A)×PA(S)+P(B)×
PB(S) = 0.5×0.24 + 0.5×0.2 = 0.22
P(G) = P(A)×PA(G)+P(B)×PB(G) =
0.5×0.16+0.5×0.68 = 0.42 PG(A) = P(A)×PA(G)
P(G)=0.5×0.16
0.42 '0.19
G
P(P) = 0.5×0.6+0.5×0.12 = 0.36 PP(A) = P(A)×PA(P)
P(P)=
0.5×0.6
0.36 '0.83
k n
k
nk
2
n
2nn
2 nk
2
n
X
k=1
1
nnk
2
n
2=2
n2(n1)
n
X
k=1 nk
2
knk
n
X
k=1 nk
2=
n1
X
k=0 k
2=1
2
n1
X
k=0
k(k1) = 1
2
n1
X
k=0
(k2
k) = (n1)n(2n1)
12 (n1)n
4
2n1
6n1
2n=2n4
6n
n+1
3n
knk
n2n
X
k=1
1
nnk
n2
=
1
n3
n
X
k=1
(n2+k22nk) = 1
n3(n3+n(n+ 1)(2n+ 1)
6n2(n+ 1)) = 1 + (n+ 1)(2n+ 1)
6n2n+ 1
n=
(n+ 1)(2n+ 1) 6n
6n2=2n23n+ 1
6n2
1
3
T N
P(T) = 20
100 =1
5P(N) = 4
5PT(6) = 1
2PT(1) = PT(2) = PT(3) =
PT(4) = PT(5) = 1
2×1
5=1
10
P(6) = P(N)×PN(6) + P(T)×PT(6) = 4
5×1
6+1
5×1
2=7
30 '0.23
P6(T) = P(T)×PT(6)
P(6) =
1
5×1
2
7
30
=3
7'0.42
P(2) = P(N)×PN(2)+P(T)×PT(2) = 4
5×1
6+1
5×1
10 =23
150
P2(N) = P(N)×PN(2)
P(2)
4
5×1
6
23
150
=20
23 '0.87 2
A B P (A) = 1
2
PA(B) = 6
9×5
8=5
12 P¯
A(B) = 3
9×2
8=1
12 P(B) =
1
2×5
12 +1
2×1
12 =1
4PB(A) =
1
2×5
12
1
4
=5
6
PB(A) = 6
9×6
9=4
9P¯
A(B) = 3
9×3
9=1
9
P(B) = 1
2×4
9+1
2×1
9=5
18 PB(A) =
1
2×4
9
5
18
=4
5
0
p0= 1 Ann
PAn(An+1) = 9
10 P¯
An(An+1) = 4
10
pn+1 =P(An+1) = P(An)×PAn(An+1) + P(¯
An)×P¯
An(An+1) = 9
10 ×pn+4
10 ×
(1 pn)=0.5pn+ 0.4 (pn)
x= 0.5x+ 0.4x= 0.8bn=pn0.8
bn+1 =pn+1 0.8 = 0.5pn+ 0.40.8 = 0.5(pn0.8) = 0.5bn(bn)
0.8b0=0.8bn=0.8×(0.5)npn=bn+0.8 = 0.8×(10.5n)
pn0.8
80%
a0= 1 b0=c0= 0
A
a1=1
3b1=2
3c1= 0
a2=P(A1)×PA1(A2) + P(B1)×PB1(A2) + P(C1)×PC1(A2) = 1
3a1+1
4b1=
1
9+1
6=5
18 b2=2
3a2+1
2b2=2
9+1
3=5
9c2=1
4b1=1
6
a2+b2+c2=5
18 +5
9+1
6= 1
an+1 =1
3an+1
4bnbn+1 =1
3an+1
2bncn+1 =1
4bn+cn
unun+1 un+1 =6
10an+1
3
10bn+1 =6
10 1
3an+1
4bn3
10 2
3an+1
2bn=2
10an+3
20bn2
10an3
20bn= 0
unn= 1
vn+1 vnvn+1 =4
10an+1+3
10bn+1 =4
10 1
3an+1
4bn+
3
10 2
3an+1
2bn=4
30an+1
10bn+2
10an+3
20bn=1
3an+1
4bn=5
64
10an+3
10bn
vn
5
6v0=4
10 =2
5vn=2
5×5
6n
un+vn=anan=2
5×5
6n
un= 0 bn= 2an=4
5×5
6n
cn= 1anbn= 13an= 16
5×5
6n
= 15
6n1
1n
0ni∈ {0; 1; . . . ;n}
Aii
P(Ai) = 1
n+ 1 1
1PAi(1) = i
ni n
i n
|Ai|=n
i|AiB|=n1
i11i1
n1PAi(1) = n1
i1
n
i=(n1)!
(i1)!(ni)! ×i!(ni)!
n!=i
n
Ai
P(1) =
i=n
X
i=0
P(Ai)×PAi(1) =
i=n
X
i=0
1
n+ 1 ×i
n=1
n(n+ 1)
i=n
X
i=0
i=1
n(n+ 1) ×
n(n+ 1)
2=1
2
1
P(2) = 1
21 2
P(1 2)
P(1)×P(2) P(1 2) |Ai12|=n2
i2
PAi(1 2) = n2
i2
n
i=(n2)!
(i2)!(ni)! ×i!(ni)!
n!=i(i1)
n(n1)
P(1 2) =
i=n
X
i=0
1
n+ 1 ×i(i1)
n(n1) =1
n(n1)(n+ 1)
i=n
X
i=0
i2
i=1
n(n1)(n+ 1) n(n+ 1)(2n+ 1)
6n(n+ 1)
2=2n+ 1 3
6(n1) =1
3
P(1) ×P(2) = 1
4
P1(2) = P(1 2)
P(1) =2
31
2
2n
n2n
n
ii P (Ai) = n
k
2n
PAi(1) P(1) =
i=n
X
i=0
1
2nn
i×i
n=1
2n
i=n
X
i=0
n!
i!(ni)! ×
i
n=1
2n
i=n
X
i=1
(n1)!
(i1)!(ni)! =1
2n
i=n
X
i=1 n1
i1=1
2nX
i=0
i=n1n1
i=1
2n×2n1=1
2
X
i=0
i=pp
i= 2p
0n1n1
P(1) ×P(2) = 1
4P(1 2)
AiP(1 2) =
i=n
X
i=0
1
2nn
ii(i1)
n(n1) =1
2n
i=n
X
i=0
n!
i!(ni)! ×i(i1)
n(n1) =1
2n
i=n
X
i=2
(n2)!
(i2)!(ni)=1
2n
i=n
X
i=2 n2
i2=
1
2n
i=n
X
i=0 n2
i=2n2
2n=1
4
1
1
2
1
2
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !