\
(X, Y )X Y
(X, Y )
ρ(X, Y ) = cov(X,Y )
σ(X)σ(Y)
X Y
(X, Y )
−1≤ρ(X, Y )≤1
ρ(X, Y )=1 a > 0b∈RY=aX +b
ρ(X, Y ) = −1a < 0b∈RY=aX +b
X Y E(XY ) = E(X)E(Y)
cov(X, Y ) = ρ(X, Y ) = 0
cov(X, Y )6= 0
cov(X, Y ) = 0 X Y
E(X1) = 3,5E(X2) = 7
E(X1X2)
E(X1X2) = P
(x,y)∈(X,Y )(Ω)
xyP (X=x)∩(Y=y)
E(X1X2) = 1
36 1×(2+3+4+5+6+7)+2×(3+4+5+6+7+8)+3×(4+5+6+7+8+9)+4×(5+6+
7 + 8 + 9 + 10) + 5 ×(6 + 7 + 8 + 9 + 10 + 11) + 6 ×(7 + 8 + 9 + 10 + 11 + 12)
E(X1X2) = 1
36 27 + 2 ×33 + 3 ×39 + 4 ×45 + 5 ×51 + 6 ×57
E(X1X2) = 1
36 27 + 66 + 117 + 180 + 255 + 342=210+435+342
6=987
36 =329
12
cov(X1, X2) = 329
12 −7×7
2=329
12 −49×6
2×6=329−294
12 =35
12 6= 0 X1X2
X Y
cov(X1, X2) = cov(X, X +Y) = cov(X, X) + cov(X, Y ) = V(X) + 0 = V(X)
V(X) = 1
6×(1−3,5)2+(2−3,5)2+(3−3,5)2+(4−3,5)2+(5−3,5)2+(6−3,5)2=1
2×25
4+9
4+1
4+1
4+9
4+25
4
=70
24 =35
12