c
Éditions H&K Publié dans les Annales des Concours 1/16
CCP Maths 1 PC 2003 — Corrigé
Ce corrigé est proposé par Céline Chevalier (ENS Cachan) ; il a été relu par Walter
Appel (Professeur en CPGE) et Jean Starynkévitch (ENS Cachan).
Ce sujet propose une étude des matrices symétriques réelles. Il comporte deux
parties liées, des résultats généraux démontrés dans la première partie étant réutilisés
dans la seconde.
La première partie se propose de démontrer certains résultats classiques sur les
matrices, et en particulier sur les matrices symétriques, positives ou définies positives.
La seconde partie a pour objectif de caractériser de différentes manières une ma-
trice symétrique réelle et définie positive, en particulier par le biais de différents
exemples calculatoires. Elle aboutit au résultat final suivant : une matrice symétrique
réelle d’ordre 3est définie positive si, et seulement si, les déterminants des matrices
supérieures gauches d’ordre 1,2et 3extraites de cette matrice sont strictement
positifs.
Peu de questions de ce problème sont vraiment difficiles, mais il utilise des tech-
niques classiques d’algèbre bilinéaire et de diagonalisation, qu’il est nécessaire de bien
maîtriser. Il traite d’algèbre réelle, mais peut tout à fait être étendu à des espaces
vectoriels plus généraux. De plus, des exemples sont fréquemment demandés en pe-
tites dimensions, ce qui suppose d’avoir bien compris ce que l’on fait. En résumé,
c’est un bon problème de révision pour cette partie du programme.
Téléchargé gratuitement sur www.Doc-Solus.fr .
c
Éditions H&K Publié dans les Annales des Concours 2/16
Indications
Partie I
I.1 Faire les calculs directement, sans repasser par les coordonnées.
I.2 Utiliser la propriété rappelée au début de l’énoncé.
I.4.a Pour le sens direct, utiliser la propriété avec un vecteur propre.
Pour la réciproque, se placer dans une base de diagonalisation.
I.5.b Trouver deux matrices diagonales Aet Btelles que le spectre de ABcontienne
un élément positif et un négatif.
I.6.b Considérer, pour tout i, une base de diagonalisation de vi.
I.7.a Utiliser la question précédente pour le sens direct, et faire le calcul directement
pour la réciproque.
I.7.b Diagonaliser Aet utiliser la question I.6.b pour trouver une base convenable.
I.8 Diagonaliser S1et S2dans la même base.
I.9.a Factoriser S2
2S1
2et utiliser les propriétés démontrées aux questions I.2
et I.8.
Partie II
II.1 Démontrer par exemple abcda, en utilisant la question I.4.a.
II.2.c Faire le calcul et résoudre le système obtenu.
II.3.b Utiliser la caractérisation de la projection.
II.3.d Utiliser la formule du changement de base pour exprimer Mà partir de T.
II.4.c Pour le sens direct, raisonner par contraposée.
II.4.d Construire un raisonnement par récurrence à partir de la question II.4.c.
Téléchargé gratuitement sur www.Doc-Solus.fr .
c
Éditions H&K Publié dans les Annales des Concours 3/16
Partie I
I.1.a Soient (X,Y) (Mn,1(R))2. On a
tX Y = hX|Yi=hY|Xi=tY X
On pouvait aussi écrire que la matrice tX Y, d’ordre 1, est nécessairement
symétrique.
I.1.b On a (tX Y)2= ( tX Y)( tX Y). Pour obtenir la première égalité, on applique
le résultat de la question précédente au deuxième terme ; pour obtenir la seconde
égalité, on l’applique au premier terme. Par suite,
(tX Y)2=tX(Y tY)X = tY(X tX)Y
I.1.c Soit S∈ Sn(R). On a d’une part,
tX SY = tX(SY) = hX|SYi
et d’autre part, tX SY = tXtS Y = t(SX) Y = hSX |Yi
d’où hX|SYi=hSX |Yi
I.2.a Soient (S1,S2)(S+
n(R))2. Pour tout XMn,1(R), on a
tX(S1+ S2)X = tX S1X + tX S2X>0
donc S1+ S2∈ S+
n(R)
I.2.b Soient S1∈ S+
n(R)et S2∈ S++
n(R). Pour tout XMn,1(R)non nul, on a
tX(S1+ S2)X = tX S1X
| {z }
>0
+tX S2X
| {z }
>0
>0
donc S1+ S2∈ S++
n(R)
I.2.c Soit AMn(R). Pour tout XMn,1(R), on a
tXtA AX = t(AX) AX = kAXk2>0
donc tA A ∈ S+
n(R)
Téléchargé gratuitement sur www.Doc-Solus.fr .
c
Éditions H&K Publié dans les Annales des Concours 4/16
I.3.a Soit S∈ Sn(R)telle que XMn,1(R),tX SX = 0. Soient λune valeur
propre de Set Xun vecteur propre associé. On a
0 = tX SX = tXλX = λkXk2
|{z}
6=0
donc λ= 0
Par définition, un vecteur propre est toujours non nul. Le sous-espace propre
associé à une valeur propre est formé de l’union des vecteurs propres associés
et du singleton {0}, mais 0n’est jamais un vecteur propre.
On en déduit que toutes les valeurs propres de Ssont nulles. Or Sest symétrique
réelle, donc diagonalisable, ce qui montre que Sest semblable à la matrice nulle.
Par suite,
S = 0
On a un résultat un peu plus fort que celui utilisé ici : toute matrice sy-
métrique réelle est diagonalisable en base orthonormale. En particulier,
ses sous-espaces propres propres sont orthogonaux deux à deux, ce qui peut
être utile pour déterminer une base propre en petite dimension. En effet,
en dimension 3 par exemple, si les trois valeurs propres sont distinctes et
que l’on a trouvé une base des deux premiers sous-espaces propres, le troi-
sième vecteur de la base peut être pris comme étant le produit vectoriel des
deux autres (de même si les deux premiers vecteurs forment une base d’un
sous-espace propre de dimension 2).
I.3.b On cherche une matrice Mnon nulle, carrée et d’ordre 3telle que
XM3,1(R)tX MX = 0
Une telle matrice est nécessairement antisymétrique. En effet, tM +M
est symétrique et, pour tout vecteur XM3,1(R),0 = tX MX. On en déduit
0 = tX MX+ t(tX MX) = tX(M+ tM)X, donc la question précédente montre
que M + tM = 0, puis que Mest antisymétrique.
De plus, n’importe quelle matrice antisymétrique convient. En effet,
si Mest antisymétrique et si Xest un vecteur,
tX MX = t(tX MX) = tXtM X = tX MX
donc tX MX = 0. Il ne reste plus qu’à choisir une matrice antisymétrique.
On peut proposer la matrice A =
0 0 0
0 0 1
0 1 0
En effet, pour tout XM3,1(R),
tX AX = x1x2x3
0 0 0
0 0 1
0 1 0
x1
x2
x3
=x1x2x3
0
x3
x2
= 0
Téléchargé gratuitement sur www.Doc-Solus.fr .
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !