Chapitre 2 : Etude du mouvement d`un solide indéformable. I

Chapitre 2 : Etude du mouvement d’un solide
indéformable.
I. Rappels.
1. Le référentiel :
Le mouvement d’un corps est décris par rapport à un corps de référence et dépend du choix de ce
corps.
Ce corps de référence est appelé référentiel.
Si ce corps est la terre, on dit que l’on se place dans le référentiel terrestre (pour nous dans la
plupart des cas).
2. Mouvement d’un point.
Le système ou solide est l’objet étudié.
Décrire le mouvement d’un corps c’est connaître le mouvement de chacun de ses points. Pour
cela, il faut déterminer la trajectoire et rendre compte de l’évolution de la vitesse.
L’ensemble des positions prises par un point au cours du mouvement est appelé trajectoire.
3. Vitesse d’un point.
a). Vitesse moyenne.
La valeur de la vitesse moyenne d’un point d’un solide dont on connaît la trajectoire entre deux
instants de dates t1 et t2 est définie par la relation :
Remarque : On peut utiliser aussi l’unité de vitesse km.h
-1
(ce n’est pas une unité du SI) :
On a 1 m.s
-1
= 3.6 km.h
-1
b). Vitesse instantanée.
La vitesse instantanée V1(t) d’un point d’un mobile à la date t1 est approximativement égale
à la vitesse moyenne de ce point, calculée entre deux instants voisins et encadrant la date t (entre
les points M−1 et M+1).
II. Le vecteur vitesse.
1. Caractéristiques du vecteur vitesse.
Le but du vecteur est de pouvoir définir la direction et le sens du mouvement.
Un point du solide ayant la position M1 à la date t1, par rapport à un référentiel donné, son
vecteur vitesse possède les caractéristiques suivantes :
· Direction : celle de la tangente en m1 à la trajectoire.
· Sens : Celui du mouvement du mobile.
· Valeur : la vitesse instantanée V1 à la date t1.
2. Représentation du vecteur vitesse.
Comme la durée t2-t0 est très petite, la direction du vecteur V1 est voisine de celle de la droite
(M0M2).
Pour représenter le vecteur, il faut donner une échelle de
vitesse.
On dira par exemple que 1 m.s
-1
est représenté par 1 cm
(choisir une échelle afin d’avoir un vecteur d’au moins 2 cm,
pas trop grand non plus pour qu’ils ne se chevauchent pas).
Un mouvement est qualifié d’uniforme lorsque la valeur de la
vitesse est constante au cours du temps.
Un mouvement est qualifié de rectiligne uniforme lorsque le vecteur vitesse est constant (même
sens, même direction, même valeur).
III. Mouvement d’un solide : le mouvement de translation et le
mouvement de rotation.
1. Les particularités du mouvement de translation.
Définition :
Un solide est en mouvement de translation lorsque tout segment joignant deux
points quelconques de ce solide reste parallèle à lui-même.
Tous les points du solide ont une trajectoire identique.
Tous les points ont à chaque instant le même vecteur vitesse (même direction, même sens et
même valeur).
Attention, à des instants différents, les vecteurs vitesses peuvent être différents.
Le cas n°1 : mouvement d’une voiture sur une route.
On a une translation rectiligne : tout segment reste parallèle à lui-même et les trajectoires de
chaque point du mobile sont des droites.
Le cas n°2 : mouvement d’une nacelle d’une grande roue.
On a une translation circulaire : tout segment reste parallèle à
lui-même et la trajectoire d’un point du solide est un cercle ou
un arc de cercle.
Le cas n°3 : déplacement d’un verre.
On a une translation curviligne quelconque : tout segment reste
parallèle à lui-même et chaque point a une trajectoire courbe, toutes
les trajectoires sont superposables.
2. Les particularités du mouvement de rotation.
Définition :
L’angle θ décrit entre deux instants donnés est le même pour tous les
points du solide. On l’appelle l’angle de rotation du solide.
Au cours d’une rotation, plus un point est éloigné de l’axe, plus la
longueur de l’arc décrit est grande : M
1
M
2
> P
1
P
2
car M plus loin de
l’axe que P.
3. Mouvement de rotation et vitesse angulaire.
Les points d’un solide en rotation n’ont pas la même vitesse.
En revanche, ils décrivent tous le même angle, il est donc intéressant de caractériser le
mouvement par la rapidité de la variation de cet angle.
Pour cela on utilise la notion de vitesse angulaire.
Pour avoir la vitesse angulaire instantanée, on procède comme pour une vitesse, on prend la
vitesse angulaire moyenne entre deux instants très proches.
Dans le cas d’un mouvement uniforme :
T
π
ω
2
= donc la période d’un mouvement circulaire est :
T =
ω
π
.2
4. Relation entre vitesse et vitesse angulaire.
En faisant un parallèle avec le fait que le périmètre d’un cercle se calcule par 2
π
(angle : 360°) * r
(rayon du cercle) on trouve une relation entre l’angle et l’arc de cercle :
D’après la relation de la vitesse :
Chaque point du solide décrit un cercle centré sur l’axe
dans un plan perpendiculaire à celui-ci. Les points de ce
solide situés sur l’axe restent immobiles.
IV. Etude du mouvement d’un point particulier du solide.
Connaître le mouvement d'un solide, c'est connaître le mouvement de chacun de ses points.
L'étude, dans le référentiel terrestre, du mouvement d'un solide lancé puis soumis à la seule action
de son poids montre que les mouvements des points constituants le solide sont complexes. Un seul
point a un mouvement plus simple que les autres : le centre d'inertie G (en l'absence de frottement,
ce point décrit une verticale ou une parabole).
Exemple : Pour un disque homogène le centre d'inertie G coïncide avec le centre du disque.
Pour tout solide homogène possédant un centre de symétrie, le centre de symétrie
coïncide avec le centre d'inertie de ce solide.
Le centre d’inertie d’un solide est confondu avec son centre de gravité.
Lorsqu’un solide est en mouvement, l’un de ses points décrit généralement une
trajectoire plus simple que celles des autres points : c’est le centre d’inertie du
solide noté G.
1 / 4 100%

Chapitre 2 : Etude du mouvement d`un solide indéformable. I

La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !