(A, φ)IA.
I={0},0.
I̸={0},
n0= min φ(I\ {0A}) = min
a∈I\{0A}φ(a)
φ(I\ {0A})
N, a0I\ {0A}n0=φ(a0) = min φ(I\ {0A}).
a I a0a=qa0+r r = 0A
a0I\ {0A}r̸= 0A, r =a−qa0I\ {0A}
I φ (r)< φ (a0) = n0, n0a=qa0
I⊂a0A. a0A⊂I I I =a0A.
A
Aa0∈A A =a0A.
a∈A, q ∈Aa=qa0.
e∈Aa0=ea0a=qa0∈A, ae =qa0e=qa0=a,
eA
Aa=bq q =ab−1(a, b)∈A×A∗, r = 0A
φ:A∗→N
(A, φ)φA
φ φ (r)< φ (b)
a∈Ab∈A∗a=bq. 1A=bq
b∈A∗,A
Z[X]
I= (2, X) = 2Z+XZ2XZ[X]
P∈Z[X]I= (2, X) = (P).
2∈I, Q ∈Z[X] 2 = P Q, P 2, P =±1
P=±2.
P∈I, P = 2A+XB A, B Z[X], P =P(0) = 2A(0)
P=±2.
X∈I, X =QP Q ∈Z[X] 1 1 = P(1) Q(1) =
2a a ∈Z,
A
A[X]