Rπ
0f(x, t)dt =Rπ/2
0f(x, t)dt +Rπ
π/2f(x, t)dt t0=π−t
cos(π−t0) = −cos(t0)
F(−x) = −F(x)F
y→ln(1 + y)u0
ln(1 + u)
u
≤
sup
y∈[0,u]
1
1 + y
y→1/(1 + y)−|u|
u=xcos t]−1,1[ x∈]−1,1[
ln(1 + xcos t)
xcos t
≤1
1− |xcos t||cos t| ≤ 1
a∈[0,1[ x∈[−a, a]|f(x, t)| ≤ a/(1 −a)t∈[0, π]
f x
F[−a, a]
a∈[0,1[ F]−1,1[
∂f
∂x (x, t) = 1
1+xcos t]−1,1[×[0, π]x∈[−a, a] 0 < a < 1
∂f
∂x (x, t)
≤1
1−aRπ
0
1
1−adt < ∞f x ∈[−a, a]
FC1
[−a, a] 0 < a < 1FC1]−1,1[
t∈R1−tan2(t/2)
1+tan2(t/2) =cos2(t/2)−sin2(t/2)
cos2(t)+sin2(t)= cos(2 ∗t/2) = cos(t)
F0(x)=2Rπ
0
1+tan2(t/2)
1+x+(1−x) tan2(t/2) dt u = tan(t/2) du =
1
2
1
1+tan2(t/2) dt =1
2
1
1+u2dt F 0(x)=4R∞
0
1
1+x+(1−x)u2du =4
1+xR∞
0
1
1+ 1−x
1+xu2du v =
uq1−x
1+xF0(x) = 4
√1−x2R∞
0
1
1+v2dv =2π
√1−x2
F(0) = 0
F F 002π
√1−x2
2πarcsin(x) + C F (0) = 0 F(x) = 2πarcsin(x)x∈]−1,1[
(E) ln(x)y0(x) + y(x)
x= 1.
x→ln(ln(x))
(EH)
(E)
(E)
g(x) = x
ln(x+1) x∈]−1,0[∪]0,+∞[g(0) = 1 g
C1]−1,+∞[
(E) ]0,∞[
(E)y0(x)+(xln x)−1y(x) = (ln x)−1
]0,1[ ]1,∞[ (E)
∂
∂x ln(ln(x)) = (xln x)−1x > 1
(EH) (xln x)−1
(EH)y(x) = Cexp(−ln(ln x)) = C(ln x)−1x > 1x∈]0,1[
y(x) = Cexp(−ln |ln x|) = C0(ln x)−1(EH)
x∈]0,1[7→ C(ln x)−1x∈]1,∞[7→ C(ln x)−1C∈R
(E)y0(x) =
C(x) (ln x)−1C0(x) (ln x)−1= (ln x)−1C0(x) = 1 C(x) = x
(E)x∈]0,1[7→ (x+C)(ln x)−1
x∈]1,∞[7→ (x+C)(ln x)−1C∈R