2014 2015
2
F(x) = Z2π
0
ln(1 + xcos t)
cos tdt.
F(x)|x|>1 ] 1,1[
11
x[1,1] F(x)=2Zπ
0
ln(1 + xcos t)
cos tdt
x[1,1] F(x) = 2 Zπ/2
0
ln(1 + xcos t)ln(1 xcos t)
cos tdt
F
1<u<1
ln(1 + u)
u
1
1− |u|
x]1,1[ |f(x, t)| ≤ |x|
1−|x|F]1,1[
FC1]1,1[ F0
t[0, π] cos t=1tan2(t/2)
1+tan2(t/2)
u= tan(t/2) F0(x) = 2π
1x2
F(0) F(x)x]1,1[
x > 1t π x < 1
0 (1 + xcos t)<0
f(x, t) = ln(1+xcos t)
cos tF
x]1,1[ tf(x, t) [0,2π] cos(t) = 0 π/2 3π/2
ln(1 + u)u u 0tf(x, t)π/2 3π/2
x F
x= 1 π/2 3π/2
1 + cos t= 0 t=π−∞
πcos t∼ −1 + (tπ)2/2 ln(1 + cos t)
2 ln |tπ|f(1, t)2 ln |tπ|R2π
0ln |tπ|dt
Rπ
0ln s ds ln s s(ln s1) 0 0
F(1)
x=1 1 cos t= 0 t= 0 t= 2π
cos t t = 0 1 cos tt2/2
f(1, t)2 ln tRπ
0ln t dt
F(1)
x[1,1] F(x) = Rπ
0f(x, t)dt +R2π
πf(x, t)dt
u= 2πtcos(2πu) = cos(u)R2π
πf(x, t)dt =R0
πf(x, u)du =
Rπ
0f(x, t)dt
Rπ
0f(x, t)dt =Rπ/2
0f(x, t)dt +Rπ
π/2f(x, t)dt t0=πt
cos(πt0) = cos(t0)
F(x) = F(x)F
yln(1 + y)u0
ln(1 + u)
u
sup
y[0,u]
1
1 + y
y1/(1 + y)−|u|
u=xcos t]1,1[ x]1,1[
ln(1 + xcos t)
xcos t
1
1− |xcos t||cos t| ≤ 1
a[0,1[ x[a, a]|f(x, t)| ≤ a/(1 a)t[0, π]
f x
F[a, a]
a[0,1[ F]1,1[
f
x (x, t) = 1
1+xcos t]1,1[×[0, π]x[a, a] 0 < a < 1
f
x (x, t)
1
1aRπ
0
1
1adt < f x [a, a]
FC1
[a, a] 0 < a < 1FC1]1,1[
tR1tan2(t/2)
1+tan2(t/2) =cos2(t/2)sin2(t/2)
cos2(t)+sin2(t)= cos(2 t/2) = cos(t)
F0(x)=2Rπ
0
1+tan2(t/2)
1+x+(1x) tan2(t/2) dt u = tan(t/2) du =
1
2
1
1+tan2(t/2) dt =1
2
1
1+u2dt F 0(x)=4R
0
1
1+x+(1x)u2du =4
1+xR
0
1
1+ 1x
1+xu2du v =
uq1x
1+xF0(x) = 4
1x2R
0
1
1+v2dv =2π
1x2
F(0) = 0
F F 002π
1x2
2πarcsin(x) + C F (0) = 0 F(x) = 2πarcsin(x)x]1,1[
(E) ln(x)y0(x) + y(x)
x= 1.
xln(ln(x))
(EH)
(E)
(E)
g(x) = x
ln(x+1) x]1,0[]0,+[g(0) = 1 g
C1]1,+[
(E) ]0,[
(E)y0(x)+(xln x)1y(x) = (ln x)1
]0,1[ ]1,[ (E)
x ln(ln(x)) = (xln x)1x > 1
(EH) (xln x)1
(EH)y(x) = Cexp(ln(ln x)) = C(ln x)1x > 1x]0,1[
y(x) = Cexp(ln |ln x|) = C0(ln x)1(EH)
x]0,1[7→ C(ln x)1x]1,[7→ C(ln x)1CR
(E)y0(x) =
C(x) (ln x)1C0(x) (ln x)1= (ln x)1C0(x) = 1 C(x) = x
(E)x]0,1[7→ (x+C)(ln x)1
x]1,[7→ (x+C)(ln x)1CR
ln(1 + x)x x 0g(x)xx11x0g
0
g0 0
g(x)1
x=xln(x+1)
x22 ln(x+ 1) = xx2/2 + o(x2)x0
xln(x+1)
x2x2/2
x21/2x0g0gC1
]1,0[]0,+[C1
gC1]1,[
xx1 (x1)(ln x)1
C1]0,[ (E) ]0,[
(x1)(ln x)1
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !