R
R
fRg:x7→ xf(x)
fRDy(F+f)(y) = i(F+g)(y)
yR
R2
f g
f(x) = cos(x)χ[π/2/2](x)g(x) = cos (πx/2)
1x2.
f
g
Z0
−∞
cos2(πx/2)
(1 x2)2dx.
fR
[π/2, π/2] yR
F±
yf=ZR
e±ixy cos(x)χ[π/2/2](x)dx
= 2 Zπ/2
0
cos(xy) cos(x)dx
=Zπ/2
0
cos((1 y)x)dx +Zπ/2
0
cos((1 + y)x)dx.
Zπ/2
0
cos((1 y)x)dx =
hsin((1y)x)
1yiπ/2
0y6= 1
Rπ/2
01dx y = 1
=(sin((1y)π/2)
1yy6= 1
π
2y= 1.
Zπ/2
0
cos((1 + y)x)dx =
hsin((1+y)x)
1+yiπ/2
0y6=1
Rπ/2
01dx y =1
=(sin((1+y)π/2)
1+yy6=1
π
2y=1.
sin(π/2πy/2) = sin(π/2 + πy/2) = cos(πy/2) cos(π/2) = cos(π/2) = 0
F±
yf=(2 cos(πy/2)
1y2yR\{−1,1}
π
2y∈ {−1,1}.
gR\{−1,1}g=1
2F±fR\{−1,1}
RgR
limx→±∞ |x|3/2|g(x)|= 0 gR
g|g(x)| ≤ 2/x2
x]− ∞,2[ ]2,+[x7→ 2/x2−∞ +
yR
F±
yg=1
2F±
yFf=πf(y) = πcos(y)χ[π/2/2](y)
fR
g2],0[
Rlimx→−∞ x3g2(x) = 0
Z0
−∞
cos2(πx/2)
(1 x2)2dx =1
2ZR
g2(x)dx
=1
8ZRF+
xfF
xfdx
=1
8ZR
f(x)F+
xFfdx
=π
4ZR
f2(x)dx
=π
2Zπ/2
0
cos2(x)dx
=π
2Zπ/2
0
1 + cos(2x)
2dx
=π
4x+sin(2x)
2π/2
0
=π2
8.
f g
f(x, y) = ln (ln(x)) ln(xy)+2y2g(x, y) = x2+ 4y2.
f
f g
g
g
A=n(x, y)R2:y0px2+y21o.
f C2
B:= ]1,+[×]0,+[,
f
Dxf(x, y)=0
Dyf(x, y)=0
1
xln(x)1
x= 0
1
y+ 4y= 0 (ln(x)=1
y2=1
4(x=e
y=±1
2.
f
(e, 1/2) f
D2
xf(x, y) = ln(x)1
x2ln2(x)+1
x2, DxDyf(x, y)=0 D2
yf(x, y) = 1
y2+ 4,
Hf(e, 1/2) = 1/e20
0 8 det (Hf(e, 1/2)) = 8/e2<0.
(e, 1/2) f f
g g C2(R2)Dxg(x, y)=2x Dyg(x, y)=8y
g(0,0) g
g C (x, y)C
x2+y2= 1 g(x, y) = 3y2+1
g0:y7→ 3y2+ 1 [1,1] g0
y= 0 y=1y= 1 g(1) = g(1) = 4
C g (0,1) (0,1)
(1,0) (1,0)
A
g
A
A g
g(0,1)
(1,0) (1,0)
(x, 0) x[1,1] g(x, 0) = x2/2
g(0,0) (1,0) (1,0)
(0,0) gR2
A(1,0) (1,0)
(0,1) g
A
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !