Ensembles et applications - Institut de Mathématiques de Bordeaux

A={2,3,4}
xN,(xA)
xN,(xA)
x, ((xN)(xA))
xN,yN, y x
xN,yN, y x
xZ,yZ, y x
A={2,3,4}xA x Nx= 2z+ 1 x4
A
A4
E
(E)xEyE(x+y=y) (E0)xEyE(x+y= 0 )
(E)E
E
(E0)E=NE=Z
P(E)E=, E ={0}, E ={0,1,2}
E A B E
A(AB)A(AB)
E A B C E (AB)C6=A(BC)
A B N
AB A 45 B55
AB A 2B4
C
A={zC| |z1| ≤ 3}B={zC| |z2i|<2}
RI= [1,3] J= [2,4]
(IJ)×(IJ) (I×I)(J×J)
f:RRf(x) = sin(x)xR
f([0, π]) f([π
4,3π
4])
f1([2,1]) f1({0})
4 (I, J)Rs:IJ
s(x) = sin(x)xI
s
s
s
s
X Y
R
X= [0,+[Y=RR={(x, y)X×Y|x2=y2}
X=RY= [0,+[R={(x, y)X×Y|x2=y2}
X= [1,1] Y= [0,+[R={(x, y)X×Y|x2+y2= 1}
fR R f(x) = x2
[0,1] f1(f([0,1]))
[1,1] f¡f1([1,1])¢
f([0,1] [1,0[) f([0,1]) f([1,0[)
f:EF
A B E f(AB)f(A)f(B)
f A B E
f(AB) = f(A)f(B)
f:NN
x7→ x+ 1
g:NN
y7−n0y=0
y1
gf f g
f: ]0,+[R+f(x) = x+1
x
f
I]0,+[JR+f
I J
f:R2R2f(x, y) = (xy, 2x+ 2y)
(a, b)R2(a, b)f(R2) 2a+b= 0
f
f:R2Rf(x, y) = xy2
f
f
g:RR2fg= idR
h:R2R2h(x, y) = (x+y2, y)h
fh(x, y)x, y R
n1un=
n
P
j=1
j(j+ 1) = 1.2 + 2.3 + ···+n(n+ 1)
n un=n(n+1)(n+2)
3n1
13+ 23+ 33+. . . +n3=n2(n+1)2
4nN\{0}
fN N \{0}
R R \{0}
3+2i
12i
1+i3
1+i
2πZ1+i3 1 + i ³(3 + 1) + (31) i ´20
zC\ {0}z+1
zR
x
cos(3x) cos(x)
(cos(x))5a1cos(x) + a2cos(2x) + a3cos(3x) + a4cos(4x) + a5cos(5x)a1a2a3
a4a5x
n(1 + i)n
¡n
0¢¡n
2¢+¡n
4¢... ¡n
1¢¡n
3¢+¡n
5¢...
Cz
(A)z3=2 (B)z2= 9 + 40 i
(C) (1 i) z2(7 + i) z+ 4 + 6i = 0
f:CCf(z) = z2zC
g:CCgf= idCg
h:CCfh= idCh
zC\{0}z=reiθr > 0θRz= exp Z Z = ln r+ iθ
z u =z+1
z
u2+u1 = 0 z6= 1 z5= 1
u2+u1 = 1
z2(z4+z3+z2+z+ 1)
cos(2π/5) = (51)/4 cos(π/5) = (5 + 1)/4
f:C\ {1} → Cf(z) = z2
1zzC\ {1}
f1({0})f1({−4})f1({3i})
uCf1({u})
f
f:C\ {−i} − C
z7−zi
z+i
f
f D ={ZC| |Z|<1}
1− |f(z)|2|z+ i|Im(z)
fCΩ = (2,0) r= 2
zCI M N R2iziz
z
I M N
[A, B]
IMN
2 + 3/Q
z, z0CzRz0⇔ |z|=|z0|.R
1 + i
[0,1] Q,]0,1[Q,N,n(1)n+1
n+ 1
nNo.
A B E A4B
A4B=AB\AB.
A, B, C P(E)A4A=A4B=B4A A4(B4C) = (A4B)4C
f:NZf(2k) = k f(2k+ 1) = k1f
I=nf:RR
fbijectiveo(I, )
xax a
R\Q+×
n Un=nzC
zn= 1o
nN(Un,×)n
pN(Up,×) (U2p,×)
U=[
nN
Un(U,×)
K=na+b2
a, b Qo(K, +,×)
M2(Z) =  a b
c d
a, b, c, d Z.
M2(Z)
R3R2
F={(x, y, z)R3|x+y+z= 0 et 2xy= 0}
G={(x, y, z)R3|xy= 0}
H={(x, y)R2|xy+ 1 = 0}
J={(x, y)R2|x2y2= 0}
K={(x, y)R2|x+ 3y4}
L={(t, 4t) ; tR}
M={(u+v, u v) ; u, v R}
R2v= (1,2) w= (2, m)mR
m w v
w v R2
v w
R3v= (1,2,5) w= (2,4, m)mR
m w v
w v P
v w
P={(x, y, z)R3|ax +by +cz = 0 }
a, b, c
R3v1= (2,4,1) v2= (1,2,0) v3= (3, b, 1) bR
b v3v1v2
v1v2v3
v2v1v3
R3
v1v2v3
R3
P={(x, y, z)R3|x2y+ 3z= 0 }
v, w P
P v w
R3
R3
u= (3,2,1) v= (4,2,0)
u= (3,1,2) v= (5,1,0) w= (1,1,4)
u= (2,4,1) v= (1,2,0) w= (3, m, 1) m
1 / 22 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !