P∈GLn(C)P−1MP =: D M
D λj6= 0 z
`:= ln |z|+ i arg z z `j
λjdiag (`1, . . . , `n)M
exp diag (`1, . . . , `n) = diag (exp `1,...,exp `n) exp L=M M
ˆ
D:= diag (λ1, . . . , λn)λj∈2πZL
M L =Pdiag (`1, . . . , `n)P−1
Lˆ
L:= Pˆ
DP −1
exp L+ˆ
L= exp Lexp ˆ
L=MP exp ˆ
DP−1=MP P −1=M
exp 0α
−α0=cos αsin α
−sin αcos α 0α
−α0∈
M2×2(R) iαRβ α
−α β 7→
β+ iα∈Cα∈2πZ
Akk A
A C1Ak
dA2
dt=˙
AA +A˙
A .
˙
A A ˙
A= exp A(A, Imax)
exp A=P∞
n=0 An
n!AdA2
dt= 2 ˙
AA
k
exp (−A) = P∞
n=0
(−A)n
n!
Mn×n(C)||exp A|| ≤ exp ||A|| Pn≥0
n(−˙
A)(−A)n−1
n!
˙
A
exp ||A|| Imax
˙
AAn
exp (−A)C1
d exp (−A)
dt=
∞
X
n=0
−˙
A(−A)n
n!=−˙
Aexp (−A).
˙
EA=−˙
Aexp (−A) = −Id ˙
A= exp A
EA(t) = exp (−A∗)−tId t∈R
EA(t)t A∗
P−1A∗P=: D∗P−1EA(t)P= exp (−D∗)−tId EA(t)
EA(t)
A(t)EAdet EA(t)6= 0 A(t)∈ M
EA(t)C1Rt7→ A(t) det (exp (−A∗)−tId) 6=
0texp (−A∗)