K K [X]K.
EKn1.
L(E)E, GL (E)
E.
Mn(K)nK, GLn(K)
Mn(K).
Id In
E
L(E)Mn(K).
AMn(K)Kn,
AA:KnKn
x7→ y=Ax.
u E.
λKuker (uλId)̸={0}.
λKu x
E u (x) = λx.
x u λ
E, Eλ= ker (uλId), λ.
u∈ L(E)uSp (u).
Eker (uλId)
{0}uλId E
λ u λId
E.
A∈ Mn(K)Kn
Kn,
λKA∈ Mn(K)
xKnAx =λx.
x A λ
Kn, Eλ={xKn|Ax =λx}ker (AλIn)
λ.
A A Sp (A).
E n 1, λ K
u∈ L(E)uλId
u Pu(X) = det (uXId)X=λ.
dim (E) = n
Sp (u) = P1
u{0}={λK|det (uλId) = 0}
Kn
K K =R
A∈ Mn(K)PA(X) = det (AXId).
u A E, A u
E
F E u,
u F u
B1F E, B=B1B2.
u A =A1A2
0A3A1B1,
u F F u u
Pu(X) = det (A1XIn1) det (A3XIn3).
Puu
F.
E
λKu α
u,
1dim (ker (uλId)) α.
Eλ= ker (uλId)
1.
u, Pλ
u EλPuu. Pλ(X)=(λX)δ
δ Eλ,
Pu(X) = (λX)δQ(X)
λ Puα, δ α.
A=a b
c d ∈ M2(K)
PA(X) = aX b
c d X=X2Tr (A)X+ det (A).
A=
a1a2a3
a4a5a6
a7a8a9
∈ M3(K)
PA(X) =
a1X a2a3
a4a5X a6
a7a8a9X
=X3+aX2bX +c
a= Tr (A), c = det (A)
b=a5a6
a8a9+a1a3
a7a9+a1a2
a4a5
2A
A∈ Mn(K),
PA(X) = (1)nXn+ (1)n1αn1Xn1+ (1)n2αn2Xn2+··· +α0
αn1= Tr (A), α0= det (A)
αn2=
1i<jn
det (Ai,j)
det (Ai,j),1i < j n, 2
A,
det (Ai,j) = aii aij
aji ajj (1 i < j n)
n= 4
A=
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44
PA(X) = X4α3X3+α2X2α1X+α0
α3=a11 +a22 +a33 +a44
α2=a11 a12
a21 a22 +a11 a13
a31 a33 +a11 a14
a41 a44 +a22 a23
a32 a33 +a22 a24
a42 a44 +a33 a34
a43 a44
Rθ=cos (θ)sin (θ)
sin (θ) cos (θ)M2(R),
Pθ(X) = X22 cos (θ)X+ 1 = (Xcos (θ))2+ sin2(θ)
θR\πZ.Sp (Rθ) =
Rθ=±I2θπZ
Sθ=cos (θ) sin (θ)
sin (θ)cos (θ)M2(R),
Pθ(X) = X21
Sp (Sθ) = {−1,1}.
E=C(R)R R
u u :f7→ f.
λ,
ker (uλId) = {f∈ C(R)|f=λf}=Rfλ
fλ
xR, fλ(x) = eλx
f01
Sp (u) = R
a < b E =C0([a, b])
[a, b]Ru u :f7→ g, g
x[a, b], g (x) = x
a
f(t)dt
λ,
fker (uλId)x[a, b],x
a
f(t)dt =λf (x)
λ= 0,x
a
f(t)dt = 0 x[a, b]f= 0
0
λ̸= 0, f ker (uλId)λf =f f (a)=0,
α f (x) = αex
λf(a) = 0 α= 0.
Sp (u) = .
u u C1([a, b]) ̸=E
u0u.
E=K[X]u u :P7→ XP.
λ,
ker (uλId) = {PK[X]|XP =λP }={0}
Sp (u) = .
0u.
C(R+,)u u :f7→ xf.
u.
λ,
ker (uλId) = f∈ CR+,|xf=λf=Rfλ
fλ
xR+,, fλ(x) = xλ
f01
Sp (u) = R
A
λ A ∈ Sn(R)⊂ Mn(C)x
Ax =λx,
Ax =λx A
txAx =λtxx =λ
n
k=1 |xk|2
A
txAx =t(Ax)x=t(λx)x=λtxx =λ
n
k=1 |xk|2
λ=λ
n
k=1 |xk|2̸= 0.
R
R
A∈ Sn(R), A A
A=
1 1 ··· 1 1
1 0 ··· 0 1
1 0 ··· 0 1
1 1 ··· 1 1
∈ Mn(R)
n3.
1 / 40 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !