1. Polynômes, équations polynomiales 2. Autres types d`équations 3

Rx42x3+x22x+ 1 = 0
x+1
xxn+1
xn
xn1
xn
x1
x
nN
x912x8+x7+x6+ 5x5x4+x37x2+x+ 1
n Pn
n2 cos nx =Pn(2 cos x)
xcos()
P P (x) =
x P (P(x)) = x
x49
50 +x50
49 =49
x50 +50
x49.
P, Q, R, S P (x)Q(y)+R(x)S(y)=1
x y
P(x)
xP (x1) = (x26)P(x)x.
px+ 3 4x1 + px+ 8 6x1=1
cos2x+ cos22x+ cos23x= 1
x1+x2=x2
3
x2+x3=x2
4
x3+x4=x2
5
x4+x5=x2
1
x5+x1=x2
2
P100
n=1
1
n(n+ 1) P100
n=1
1
n(n+ 1)(n+ 2)
nN1x2
1=x2
1x2
2=x31x2
n1=xn1x2
n=x1
(xn)n>1|x1|<2014 3xnxn1=n
n > 1x2014 106
u0= 5 un+1 =un+1
un45 < u1000 <50
Rx42x3+x22x+ 1 = 0
x= 0 x2x2+x2
2(x+x1) + 1 = 0 x2+x2= (x+x1)22y=x+x1
y22y1=0 y= 1 ±2x2yx + 1 = 0
x=1
2(y±py24) |y|>2
x=1
2(1 + 2±q1+22).
x+1
xxn+1
xn
xn1
xn
x1
x
nN
Tn
n xn+xn=Tn(x+x1)
T0= 2 T1(X) = X(x+x1)(xn+xn) =
(xn+1 +xn1)+(xn1+xn+1)Tn+1(X) = XTn(X)Tn1(X)
x+1
xTn(x+x1)
Un
nxn+1 xn1
xx1=Un(x+x1)
U0(X)=1 U1(X) = X
(x+x1)(xn+1 xn1) = (xn+2 xn2)+(xnxn)
Un+1(X) = XUn(X)Un1(X)
x912x8+x7+x6+ 5x5x4+x37x2+x+ 1
x=p/q p q
p912p8q+p7q2+p6q3+ 7p5q4p4q5+p3q67p2q7+pq8+q9= 0.
p q9p=±1q p9q=±1
x=±1 1 1
n Pn
n2 cos nx =Pn(2 cos x)
xcos()
2 cos nx cos x= cos(n+ 1)x+ cos(n1)x
Pnn
x=m/n m n Tn(2 cos ) = 2 cos =±2
2 cos xπ Tn2Tn
2 cos cos 0,±1
±1/2x1
2+k k k/3k
P P (x) = x
P(P(x)) = x
P(x)x P (x)> x
x P (P(x)) > x x
x49
50 +x50
49 =49
x50 +50
x49.
a= 49 b= 50
a(xa)2(xb) + b(xa)(xb)2=a2b(xa) + ab2(xb).
(xa)(xb)(a(xa) + b(xb)) = ab(a(xa) + b(xb))
x=a2+b2
a+b(xa)(xb) = ab
x2(a+b)x= 0 x= 0 x=a+b x =a2+b2
a+b
P, Q, R, S P (x)Q(y) + R(x)S(y)=1
x y
P= 0 R(x)S(y) = 1 R S
Q R(x)S(y)y R S
P R 1
S(1 QP (y))
P R
y z
S(y)S(z)
R(x) = 1
S(y)(1 Q(y)P(x)) = 1
S(z)(1 Q(z)P(x))
S(z)S(y) + [S(y)Q(z)S(z)Q(y)]P(x) = 0 S(y)Q(z)S(z)Q(y)
P(x)S(y)Q(z)S(z)Q(y)=0
S(z) = S(y)
S
S
P(x)
xP (x1) = (x26)P(x)x.
x= 0 0 P n
<26 P(n1) = 0 0 = nP (n1) = (n26)P(n)P(n) = 0
0,1,...,25 P
P(x) = x(x1) ···(x25)Q(x).
Q(x) = Q(x1)
Q(n) = Q(0) Q±∞ x
Q P (x) = ax(x
1) ···(x25) aR
px+ 3 4x1 + px+ 8 6x1=1
y=x1x=y2+1 p(y2)2+p(y3)2=
1|y2|+|y3|= 1
y>3 2y5=1 y= 3
y62 2y5 = 1y= 2
26y63 1 = 1
26y63 5 6x610
cos2x+ cos22x+ cos23x= 1
2 cos2x= 1 + cos 2x
1 + cos 2x+ cos 4x+ cos 6x= 0.
1 + cos 6x= 2 cos23xcos 2x+ cos 4x= 2 cos xcos 3x
cos 3x(cos 3x+ cos x) = 0 cos xcos 2xcos 3x= 0
x= (k+1
2)π x = (k+1
2)π
2x= (k+1
2)π
3kZ
x1+x2=x2
3
x2+x3=x2
4
x3+x4=x2
5
x4+x5=x2
1
x5+x1=x2
2
x1=··· =x5= 2
i xix2
i=xi1+xi262xixi62
xj62
2Pxi=Px2
iP(xi
1)2= 5 1
(xi1)2= 1 i xi= 2 i
P100
n=1
1
n(n+ 1) P100
n=1
1
n(n+ 1)(n+ 2)
1
n(n+ 1) =1
n1
n+ 1 n= 1,...,100
11
101 =100
101
a, b, c 1
n(n+ 1)(n+ 2) =a
n+b
n+ 1 +c
n+ 2
1 = a(n+ 1)(n+ 2) + bn(n+ 2) + cn(n+ 1),
1 = (a+b+c)n2+ (3a+ 2b+c)n+ 2a a +b+c= 3a+ 2b+c= 0
2a= 1 a= 1/2b=1c= 1/2
1
41
202 +1
204
nN1x2
1=x21x2
2=
x31x2
n1=xn1x2
n=x1
f(x)=1x2xi+1 =f(xi)
16i6n xn+1 =x1
f f(x) = x x2+x1 = 0
a=15
2b=1 + 5
2
xi=a i
xi=b i
f(0) = 1 f(1) = 0 n
xi= 0 i xi= 1 i
xi= 1 i xi= 0 i
(xk)16k6n
a, b, 0,1
x1< a f(x)< x x < a x2=f(x1)< x1
x1> x2>··· > xn> x1
0 1
x7→ f(f(x)) x0,1, a, b
f[0,1] [0,1] ff
[0,1] k xk[0,1]
xk6xk+2 ff xk+2 6xk+4
0,1, a b
xk+2 6xk
0 1
xka0a6f(x)61
x[a, 0] xk+1 [a, 1] 0
1xk+1 [a, 0]
f[a, 0]
61xk>1k
f[1,+[
(xn)n>1|x1|<2014 3xnxn1=n
n > 1x2014 106
xn=an +b
a b n = 3(an +b)
a(n1) b= 2an + (2b+a)a= 1/2b=1/4
yn=xn(n
21
4)
3yn=yn1|y1|<2015 |y2014|=
y1
32013
<2015
32013 <106
1006,75 x2014 106
u0= 5 un+1 =un+1
un45 < u1000 <50
xn=u2
n
x0= 25 xn+1 =xn+1
xn+ 2 xn+1 >xn+ 2
xn>25 + 2n x1000 >2025 = 452
xn+1 xn= 2 + 1
xn
62 + 1
25+2nn0 999
x1000 25 62000 + ( 1
25 +1
27 +··· +1
2023 )62000 + 1000
25 = 2040 x1000 6
2065 <502
1 / 17 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !