k MX
n
P
j=1
akj xjk[[1, n]],
|
n
P
j=1
akj xj|6
n
P
j=1 |akj | kXk6kMkkXk,kM X k6kMkkXk
M=
d
P
k=1
xkBkM0=
d
P
k=1
x0
kBkMλ
N(λM) = max
16k6d|λxk|=|λ|max
16k6d|xk|=|λ|N(M)
k[[1, d]],|xk+x0
k|6|xk|+|x0
k|6N(M)+N(M0)N(M+M0)6N(M)+N(M0)
N(M) = 0 k[[1, d]], xk= 0 M= 0 βM
N M
a b
¡kMpk¢pN0¡N(Mp)¢pN0¡xp(k)¢pN
0
f(x) =
`1
P
k=0
f(k)(λ)
k!(xλ)k+Zx
λ
(xu)`1
(`1)! f(`)(u)u
` f λ
u=x+t(λx),
f(x) = (xλ)`Z1
0
t`1
(`1)!f(`)(x+t(xλ)) t.
h h(x) = Z1
0
t`1
(`1)!f(`)(x+t(xλ)) tZ1
0
g(x, t)t, g
C1I×[0,1] R
h
C1IxI, h0(x) = Z1
0
g
x(x, t)t
gCI×[0,1]
hCI
j[[1, r]] k[[0, mj1]],
f(k)(λj) = g(k)(λj) +
k
X
p=0 µk
ph(kp)(λj(p)
A(λj).
p6mj1,Π(p)
A(λj) = 0 j[[1, r]],k[[0, mj1]], f(k)(λj) = g(k)(λj)f
Ag
j[[1, r]], Pj(X)=(Xλ1)m1. . . (Xλj)mj
j
(Hj) : hj∈ C
IxI, f (x)g(x) = Pj(x)hj(x)
(H1)
(Hj1) 2 6j6r(Hj)
hj1= (fg)×1
Pj1
(fg)(k)(λj)=0 k[0, mj1],
k[0, mj1], h(k)
j1(λj) = 0 hj∈ C
I
xI, hj1(x) = (xλj)mjhj(x),(Hj)
(2) =(1)
(1) =(2) P
AQ j [[1, r]], λj
PQ mjPQ(Xλj)mj.
(Xλj)mjλjPQ
ΠA
ϕ ϕ(P) = ϕ(Q)
P
AQ P QΠAP=Qdeg PQ6m1
deg ΠA=m
Rm1[X]Rmϕ
PfϕRm1[X]
ϕ(Pf) = ³¡P(k1)(λ1)¢06k16m11,...,¡P(kr)(λr)¢06kr6mr1´
Q R f =QΠA+Rdeg R6m1
f
AR, Pf=R A X,
N
P
k=0
akAk= 0 + Pf(A)f(A) =
N
P
k=0
akAk
A X22X+1 = (X1)2
A(X1)2,(X1) A,
ΠA(X) = (X1)2
f(x) = ax+b, f(A) = aA +bI2
f(x) = sin πx, Pf1Pf(1) = 0 P0
f(1) = π
Pf(X) = π(1X)f(A) = π(I2A)
f(x) (x1)2g(x), f(A)=0 R1[X]Pf(1) =
P0
f(1) = 0
ϕ, Qj,k Q(k)
j,k (λj) = 1
`[[0, mj1]] `6=k, Q(`)
j,k(λi) = 0.
f∈ C
I
r
P
j=1
mj1
P
k=0
f(k)(λj)Qj,k m f
A, Pf
b
Qj,k f Qj,k,
f=Pf= 1.b
Qj,k + 0,
Zj,k αj,k
r
P
j=1
mj1
P
k=0
αj,kZj,k = 0.
ϕ, f, m,
j[[1, r]],k[0, mj1], f(k)(λj) = αj,k f=Pf=
r
P
j=1
mj1
P
k=0
αj,kQj,k
f(A) =
r
P
j=1
mj1
P
k=0
αj,kZj,k = 0,deg f < m f 6= 0
f∈ C
If(A) =
r
P
j=1
mj1
P
k=0
f(k)(λj)Zj,k
f(A) = Pf(A)Zj,k =Qj,k(A)
AΠA(X) = (X1)2, r = 1, m1= 2 λ1= 1
f∈ C
I, f(A) = f(1)Z1+f0(1)Z2Z1=Z1,1Z2=Z1,2
f(x) = 1 xR
+, I2=Z1.
xR
+, f(x) = x, Z1+Z2=A
Z1=I2Z2=AI2
α > 0, f :x7−xαCR
+
f(A) = I2+α(AI2)
Aα=αA + (1α)I2A2004 = 2004A2003I2A=1
2(A+I2)
AX(X2+X) = X2(X+1) ΠA,
X(X+1)
X2(X+1) A(A+I3)6= 0 ΠA(X) = X2(X+1)
AMn(R)
λ1= 0 λ2=1Z1,1, Z1,2, Z2,1
f∈ C
R, f(A) = f(0)Z1,1+f0(0)Z1,2+f(1)Z2,1.
f(x) = x+1, x x2A+I3=Z1,1, A =Z1,2Z2,1
A2=Z2,1
Z1,1=A+I3=
21 1
21 1
21 1
, Z1,2=A+A2=
11 1
11 1
0 0 0
, Z2,1=A2=
0 0 0
110
110
.
f7−Pf
Pαf =αPfPf+g=Pf+Pg
PfPg, h, k ∈ C
If=Pf+hΠAg=Pg+kΠA
fg =PfPg+h1ΠAh1∈ C
Ifg
APfPg.
APfPg
APfg
HR[X]Pfg =PfPg+HΠA
f, g ∈ C
IαR, S(αf) = Pαf (A) = αPf(A) = αS(A)S(f+g) = Pf+g(A) =
Pf(A) + Pg(A)
f, g ∈ C
IS(fg) = Pfg (A) = Pf(A)Pg(A) +H(AA(A) = Pf(A)Pg(A) = S(f)S(g)
S(1) = In1 1
S(C
I,+,×,·) (Mn(R),+,×,·)
fS f(A) = 0 Pf(A) = 0 Pf= 0 f
A0
fC
Ij[[1, r]],k[0, mj1], f(k)(λj) = 0
hΠA, h ∈ C
I
(cos A)2+ (sin A)2= (S(cos))2+ (S(sin))2=S(cos2) + S(sin2) =
S(cos2+sin2) = S(1) = In
λjf1C
II=R
+(A)2=
(S(f1))2=S(f2
1) = S( ) = A
A×1
A=S( )S(f1) = S(1) = In
1
A
A, 1
A=A1
SRMA
Mn(R)C
IMAf, g ∈ C
I,
f(A)g(A) = (fg)(A) = (gf)(A) = g(A)f(A)
f(A) = Pf(A)fRm1[X],MA={P(A), P Rm1[X]}=
S(Rm1[X]),dim MA6m S Rm1[X]
dim MA6m
A, λjA
λ1. . . λr,ΠA(A) = 0 α1A+α2A2+···+αmAm=In,
A×(α1In+α2A+··· +αmAm1) = InA
MA, A1∈ MA
(1) =(2) f(A)Mn(R),MA
g∈ C
If(A)g(A) = In, Pf(A)Pg(A) = In. Pfg(A) = Pf(A)Pg(A) = In,
Pfg (X) = 1
j[[1, r]], Pf(λj)Pg(λj) = 1 Pf(λj)6= 0
(2) =(1) j[[1, r]], Pf(λj)6= 0 PfΠA
U V UPf+VΠA= 1 U(A)Pf(A) = In,
U(A)f(A) = Inf(A)Mn(R)
λ f(A)f(A)λIn= (fλ)(A)
j[[1, r]] f(λj) = λ
Λf(A)=fA)
β Zj,k MA
¡fp(A)f(A)¢pN0j[[1, r]] k[[0, mj1]],
¡f(k)
p(λj)f(k)(λj)¢pNβ
f:x7−etx fp:x7−
p
P
`=0
(tx)`
`!
f(k)
p=tkfpkj[[1, r]] k[[0, mj1]] k6p¡f(k)
p(λj)¢pN
¡f(k)(λj)¢pN
ft(A) =
+
P
`=0
t`
`!A`
X(t) =
x(t)
y(t)
z(t)
I=R
X(t) = exp(tA)X0, X(t) = ft(A)X0, X0=X(0)
ft(A) = ft(0)Z1,1+f0
t(0)Z1,2+ft(1)Z2,1=
2+t1t1+t
2+tet1t+et1+t
2et1+et1
X(t)X(0)
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !