- 1 -
Chapitre 1: Facteurs d'échelle
Des considérations générales sur la taille des objets ou des êtres vivants et leur influence sur
différents paramètres, permettent d'établir simplement quelques lois ou tendances, sans qu'il
soit nécessaire d'entrer dans les détails de fonctionnement souvent très complexes.
1.1 Analyse dimensionnelle
L'analyse dimensionnelle d'une formule ou d'un résultat permet de tirer d'emblée quelques
conclusions. Pour cela, il faut réaliser que les unités de toutes les grandeurs physiques peuvent
s'exprimer avec les unités de base masse (kg), longueur (m), temps (s), courant électrique (A).
Ainsi:
Grandeur physique
Définition
Unités (ou dimension)
masse volumique
ρ=m/V
kg/m3
accélération
a=Δv/Δt
m/s2
force
F=ma
kg.m/s2
travail ou énergie
A=f.d
kg.m2/s2
puissance
P=E/t
kg.m2/s3
chaleur massique
c=Etherm/m.Δθ
m2/(°.s2)
courant électrique
I=Q/t
A
tension électrique
U=Eél/Q
kg.m2/A.s2
pression
p=F/S
kg/s2.m
champ électrique
E=F/q
kg.m/A.s3
champ magnétique
F=qvB B=F/q.v
kg /A.s4
etc...
Exemple 1: Accélération dans un mouvement circulaire
On sait par expérience que l'accélération dans un virage dépend de la vitesse à laquelle on le
prend et de son rayon de courbure. La seule possibilité est :
av2
r
Exemple 2: les temps, distance, masse etc de Planck procèdent du même type de réflexion.
Voir cours Astrophysique.
Exemple 3: Période d'un pendule.
La période d'un pendule dépend clairement de la longueur du fil et de l'accélération de la
pesanteur... Comment 'fabriquer' un temps en combinant ces deux grandeurs?
1.2 Monstres, lilliputiens et puces savantes
Des êtres humains miniatures ou des insectes géants qui soient des homothéties exactes des
créatures que nous connaissons, ne peuvent exister. Pour des questions de résistance des
matériaux, des araignées géantes ne pourraient avoir des pattes proportionnellement aussi
grêles que les araignées réelles. En effet, admettons qu'une sphère de rayon R soit supportée
par un cylindre de rayon r. L'effort (tension) auquel est soumis le cylindre porteur, est donné
par
σ
=Poids sphère
Section cylindre
. Cet effort produit un allongement (ou une compression) relative
qui ne dépend que des propriétés élastiques du matériau. Si le matériau du géant ou du
Facteur d'échelle
- 2 -
lilliputien est le même, on a que
σ
=mg
π
r2 R3
r2=constante
, d'où l'on tire
rR3 / 2
. Par
exemple, si l'on double le rayon de la sphère, il faut plus que doubler le rayon du cylindre
(
R'=2Rr'=23r=2,83r
). Ce qui signifie que les gros animaux ont des membres trapus -
il suffit de comparer la silhouette d'un éléphant et celle d'un chat!
Quant aux puces réputées pour leurs sauts pouvant atteindre 200 fois leur dimension linéaire,
voici ce qui se passerait si elles étaient mille fois plus grandes (passant du mm au m). Masse:
109 fois la masse initiale; puissance musculaire - qui est proportionnelle à la section des
muscles: 106 fois la puissance initiale. Le saut d'une telle puce atteindrait 0,2 fois seulement
(égal un cinquième) sa dimension linéaire, soit quelque 20 cm...
1.3 Refroidissement, respiration et division cellulaire
Une sphère à 37° (comme un humain!) se refroidit plus ou moins vite selon sa taille. L'énergie
thermique emmagasinée est proportionnelle au volume, les pertes d'énergies sont
proportionnelles à la surface de l'objet. Si ces dernières s'effectuaient à un taux constant (ce
qui n'est pas vraiment exact!), le temps nécessaire au refroidissement de la sphère donnerait
en première approximation:
, soit
tR3
R2=R
. Une petite
sphère se refroidit plus rapidement qu'une grande, ce qui implique que les petits mammifères
doivent manger constamment pour compenser leur déperdition de chaleur et qu'il y a donc une
taille minimum pour un mammifère (un mammifère trop petit ne pourrait pas assurer une
ingurgitation suffisante de nourriture).
Un raisonnement analogue permet de conclure que les insectes sont en général suffisamment
petits pour permettre l'apport d'oxygène par diffusion à travers la surface du corps. Dans le cas
de l'homme, seul 2% de l'apport d'oxygène est réalisé par ce biais: l'être humain est contraint
de respirer pour couvrir ses besoins!
Pour les mêmes raisons (rapport du volume à la surface qui le délimite) les cellules ne
peuvent croître indéfiniment. En effet, les échanges avec l'extérieur se font à travers la
membrane. Or, comme la quantité de substances nutritives dont a besoin la cellule est
proportionnelle au volume de la cellule, alors que le taux d'échange est proportionnel à la
surface de la cellule, la cellule s'asphyxie et meurt au delà d'une certaine taille (les échanges
avec l'extérieur ne s'effectuant plus assez rapidement).
1.4 Métabolisme, fréquence cardiaque et longévité (D'après Bouyssy, Davier, Gatty)
Lorsque l'on représente le métabolisme de base,
P (W) en fonction de la masse M (kg) pour un
grand nombre d'espèces, les mesures se
regroupent en trois familles, selon qu'il s'agit
d'organismes unicellulaires à 20°C (1),
d'animaux à sang froids à 20°C (2) ou
d'organismes plus évolués à sang chaud, à une
température interne d'environ 39°C (3). Ceci met
en évidence le fait que la dépense énergétique
de base par unité de temps, dépend de la masse
de l'organisme. Les courbes ci-contre montrent
!Echelles logarithmiques!
Facteur d'échelle
- 3 -
que la relation puissance-masse suit la loi suivante (loi de Kleiber):
P=kM0,75
avec k = 0,018 ou k=0,14 ou k=4,1 respectivement pour les 3 cas cités plus
haut.
Si l'on ne tenait compte que de la déperdition de chaleur qui est proportionnelle à la surface
du corps (de dimension linéaire R), on s'attendrait à ce que la puissance métabolique soit
donnée par
PR2M2 / 3 =M0,67
. Un raisonnement plus complet et tenant compte du travail
effectué conduit à la loi de Kleiber donnée plus haut.
Exemple: la souris (25 g) mange une masse équivalent au 1/3 de sa masse par jour; l'éléphant
(3 t) mange le 1/100 de sa masse. Si la première ne mangeait pas, elle épuiserait toutes ses
réserves en 7 jours, alors que l'éléphant pourrait tenir plusieurs mois.
Beaucoup de fonctions métaboliques suivent la loi en
M0,75
. Il en résulte d'importantes
conséquences pour la durée de vie des animaux, pour leur vitesse de déplacement sur terre,
dans l'eau et les airs, pour le processus d'hibernation, etc.
On déduit de la relation de Kleiber que la fréquence cardiaque N varie avec la masse comme
N1
M0,25
. En effet, le temps entre deux battements est donné par
t=Energie
Puissance M
M0,75 =M0,25
. Elle vaut 600 battements/minute pour la souris contre 30
battements/minute pour l'éléphant. Ceci influe sur la longévité d'un animal, tout se passant
comme si chacun avait un certain potentiel de battements (de l'ordre de 109 battements par
vie).
Les mesures ci-contre montrent la durée de
vie moyenne de quelques mammifères en
fonction de leur masse. La droite est donnée
par:
L(longévité en années)=10 M1/ 4
Voir aussi tableau ci-dessous:
Espèce
Masse (kg)
Longévité moyenne (ans)
Souris
0,025
3,5
Cobaye
0,3
7,5
Renard
3
14
Chèvre
30
18
Homme
65
70 (28)
Gorille
200
35
Eléphant
3'500
70
Facteur d'échelle
- 4 -
1.5 Autres applications
A) La course à pied peut être décrite en utilisant la loi d'échelle : lorsqu'on court, on lève
successivement une jambe puis l'autre, et on la laisse retomber. Les muscles réalisent donc un
travail A qui est égal au produit d'une force (proportionnelle à la section d2 du muscle) par le
déplacement de la force (
l
). Donc
A ld2
. L'énergie cinétique est égale au travail fourni,
ce qui permet d'écrire:
A=1
2
mv 2=kld2=k'm
. Donc
v2=2k'
. Or k' (et k, bien sûr) est
une constante, donc la vitesse v est une constante également, indépendante de la masse. Ceci
est presque vrai: on observe des vitesses de 5 à 25 m/s pour une vaste distribution de masses.
Par ailleurs, les animaux les mieux adaptés à la course ont des jambes fines, avec une masse
concentrée dans le voisinage de la cuisse, de façon à minimiser l'énergie mise en jeu pour
soulever la jambe.
B) La forme des hautes cheminées d'usine et
des arbres peut aussi être déduite en
appliquant la loi d'échelle. Celle-ci montre
que le diamètre de ces objets diminuent
progressivement de la base vers le sommet
selon la loi
d=kl3 / 2
k dépend du
matériau.
Facteur d'échelle
- 5 -
Interprétation: naïvement on aurait pu attendre que
P=k'M
. Compte tenu de la déperdition
de chaleur qui est proportionnelle à la surface de l'animal et qui doit être compensée par la
prise de nourriture, la relation devrait plutôt être
P=k'M2 / 3
. Finalement, en prenant en
compte le travail mécanique, on trouve que la puissance est donnée par
P=Fdl
dt
. La
puissance mécanique met en jeu les muscles, de section s et de longueur
l
. La force
musculaire est proportionnelle à s, et le taux de variation de la longueur du muscle est
exprimée par
dl
dt
. On a donc:
P=ksdl
dt
. Seul le terme s dépend de la taille de l'animal, les
autres paramètres sont des caractéristiques du fonctionnement musculaire et donc les mêmes
pour une catégorie d'animaux.
Lien entre
l
et
s=
π
d2
4
: les contraintes mécaniques font que
dl3 / 2
.
La masse de l'animal est proportionnelle à son volume:
Mld2=d8 / 3
soit
dM3 / 8
. Donc
la puissance s'écrit:
P s d2 (M3/8)=M3 / 4 =M0,75
ce qui confirme la relation mise en évidence
expérimentalement (loi de Kleiber).
(Résumé de Bouyssy, Davier, Gatty)
Dimensions d'un muscle:
l
d
Modèle d'un animal:
Les contraintes mécaniques font qu'une
cheminée d'usine ou un tronc d'arbre ont un
diamètre diminuant progressivement de la
base vers le sommet selon la loi
d=kl3 / 2
k dépend du matériau.
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !