9 L`énergie chimiqu..

publicité
Chap 9  :
I]
Cohésion de la matière.
1.
La matière, ensemble d'entités.
1ère S
L'ENERGIE CHIMIQUE
Grâce à des interactions qui compensent l'agitation thermique microscopique, les atomes peuvent s'assembler en molécules et les ions
se regrouper en solides ioniques.
2.
Energie de liaison.
Pour étudier la formation ou la dissociation des assemblages d'entités chimiques, les chimistes prennent pour référence l'état gazeux
qui minimise les interactions (cf. GP).
Ex : 2 atomes isolés H et Cl peuvent se lier pour former la molécule HCl : H + Cl  HCl. Le système cède l'énergie E = 7.10-19 J.
La transformation inverse consiste à rompre la liaison H–Cl : HCl  H + Cl. Il faut fournir au milieu réactionnel E = 7.10 -19 J.
 la nature des atomes, la formation d'une liaison 
entre ces atomes correspond toujours à une libération
d'énergie. Inversement, la rupture d'une liaison 
nécessite toujours un apport d'énergie de la part du
milieu extérieur.
L'énergie de liaison DA-B est l'énergie à fournir à une
température donnée, pour dissocier une mole de
molécules AB à l'état gazeux en une mole d'atomes A Ceci peut être représenté sur
et une mole d'atomes B à l'état gazeux. Elle s'exprime diagramme d'énergie.
en J.mol-1 ou en kJ.mol-1.
un
Tableau donnant quelques énergies de liaison à 25 °C:
1. Dans des molécules diatomiques.
2. Dans des molécules polyatomiques.
Lorsqu'une molécule comporte plusieurs liaisons covalentes, on appelle énergie de cohésion de la molécule, l'énergie qu'il faut
fournir, à une température donnée, à une mole de molécules à l'état gazeux pour rompre toutes les liaisons chimiques
intramoléculaires et obtenir des atomes isolés à l'état gazeux.
Cette énergie de cohésion se calcule à partir des énergies moyennes de liaison fournies par les tables précédentes.
Ex : énergie de cohésion du propène CH2=CH–CH3 : E cohésion = 348 + 612 + 6  410 = 3420 kJ.mol-1.
3.
Energie de cohésion d'un solide ou d'un liquide moléculaire.
L'énergie de cohésion d'un S ou L moléculaire est l'énergie qu'il faut fournir
à une mole du S ou du L pour l'amener à l'état gazeux, l'état initial et l'état
final étant à la même température.
L'énergie de cohésion est également l'énergie qu'il faut fournir pour rompre
les liaisons intermoléculaires et disperser les molécules constituant le solide
ou le liquide.
NB : intramoléculaire = au sein d'1 molécule. Intermoléculaire = entre les molécules.
Cette énergie de cohésion est en général dix fois plus faible qu'une énergie de liaison car les liaisons intermoléculaires sont + faciles
à rompre que les liaisons intramoléculaires.
II]
1.
Aspect énergétique des transformations de la matière.
Les transferts d'énergie.
Par convention, les variations d'énergie d'1 système sont comptées positivement s'il reçoit de l'énergie et négativement s'il en perd.



Si un système est isolé, c'est à dire qu'il n'échange pas d'énergie avec le milieu extérieur, son énergie se conserve.
Dans le cas où un système est en interaction avec le milieu extérieur, l'énergie reçue par le système doit être égale à
l'énergie cédée par le milieu extérieur ou vice versa.
Dans le cas général de plusieurs systèmes en interaction (le milieu extérieur étant considéré comme un système), la somme
algébrique des variations d'énergie des systèmes intervenant lors d'une transformation (physique ou chimique) est nulle.
2.
Bilan énergétique d'un changement d'état.
Voir simulateur Microméga Hatier
Variations d'un système constitué d'eau (solide, liquide ou vapeur) en
fonction de la température.





L'énergie apportée par l'extérieur sert à augmenter la T°C du
glaçon de –10°C à 0°C.
L'énergie apportée par l'extérieur ne modifie pas la T°C du
glaçon mais le fait fondre.
L'énergie apportée par l'extérieur sert à augmenter la T°C de
l'eau liquide de 0°C et 100 °C.
L'énergie apportée par l'extérieur fait bouillir l'eau et la vaporise.
La T°C de la vapeur d'eau peut augmenter si l'apport d'énergie se
poursuit.
On appelle chaleur latente de changement d'état d'une espèce chimique, l'énergie échangée sous forme de chaleur avec le
milieu extérieur à p et T constantes, par une mole de cette espèce chimique, lors du changement d'état considéré.
Une chaleur latente se note Q ou L en J.mol-1. Voir tableau page 193.
Rq : la chaleur latente de vaporisation ou d'ébullition, est égale à l'énergie de cohésion du liquide pris à sa température d'ébullition.
3.
Ex :
Energie mise en jeu lors d'une réaction chimique.
2 C4H10(g) + 13 O2(g)  8 CO2(g) + 10 H2O(g)
Cette réaction libère une énergie E transférée au milieu extérieur % x.
Le coefficient de proportionnalité est noté Qr, il est de même signe que E.
Pour cette réaction : Qr = - 5210 kJ.mol-1.
L'énergie qu'un système échange sous forme de chaleur avec le milieu extérieur, au cours d'une réaction chimique d'équation
donnée et pour laquelle l'état initial et l'état final sont à la même T et à la même p, à pour expression :
E = x . Qr
unités J, mol, J.mol-1.
 Si E < 0: la réaction est exothermique.
 Si E > 0: la réaction est endothermique.
 Si E = 0: la réaction est athermique.
Qr est la chaleur de réaction.
Ex : déterminons l'énergie mise en jeu lors de la combustion, dans un excès de O 2 de 145 g de butane de masse molaire 58,0 g.mol -1.
nbutane = 2,5 mol.
2 C4H10(g)
Etat
Initial
Intermédiaire
Final
Avancement
0
x
xmax
Energie E (kJ)
0
x Qr
xmax Qr
13 O2(g)
8 CO2(g)
10 H2O(g)
Quantité de matière
Quantité de matière
Quantité de matière
Quantité de matière
2,50
2,50 –2x
2,50 – 2xmax
excès
excès
excès
0
8x
8 xmax
0
10 x
10 xmax
Le butane est limitant : xmax = 1,25 mol  E = 1,25  (-5210) = - 6513 J.
E est cédée au milieu extérieur sous forme de chaleur lors de la combustion de 2,50 mol de butane.
NB: la chaleur de réaction Qr se définit pour un avancement de 1 mol de la réaction.
4.
Interprétation microscopique.
Ex : synthèse du chlorure d'hydrogène à 25°C :
H2(g) + Cl2(g)  2 HCl(g)
Qr = -184 kJ.mol-1.
On peut décomposer le mécanisme de cette réaction en 2 étapes :

H2(g) + Cl2(g)  2 H(g) + 2 Cl(g) : rupture des liaisons H – H et Cl – Cl. L'énergie à fournir partant d'une mole de H2(g) et d'une
mole de Cl2(g) vaut 432 + 240 = 672 kJ.

2 H(g) + 2 Cl(g)  2 HCl(g) : l'énergie produite lors de la formation des liaisons H – Cl à partir de 2 moles de H(g) et de 2 moles
de Cl(g) vaut – 2  428 = – 856 kJ.
Au final, pour 2 moles de HCl(g) formées, ce qui correspond à un avancement de 1 mol, l'énergie transférée au milieu extérieur vaut :
E = 672 – 856 = –184 kJ.
NB: il est indispensable de préciser l'état physique de chaque réactif et de chaque produit car pour une même espèce  il ne faudrait
pas oublier de comptabiliser d'éventuelles chaleurs latentes de changement d'état.
La chaleur de réaction relative à une équation  dont les réactifs et les produits sont à l'état gazeux, est égale à la somme des
énergies des liaisons rompues diminuées de celle des liaisons formées :
Qr =  Dliaisons rompues –  Dliaisons formées
III]
1.
Application au quotidien.
Réactions chimiques de combustion.
La combustion complète des hydrocarbures (S, L, G) produit du dioxyde de carbone et de l'eau. Elle est caractérisée par une chaleur
de réaction Qcomb < 0 puisqu'une telle réaction est exothermique.
Ex : 2 C4H10(g) + 13 O2(g)  8 CO2(g) + 10 H2O(g)
Qcomb = 6 DC–C + 20 DC–H + 13 DO=O – 16 DC=O – 20 DO=H = 6  348 + 20  410 + 13  494 – 16  795 –20  460 = - 5210 kJ.mol-1.
2.
Enjeu économique.
L'efficacité des divers combustibles utilisés pour le chauffage se compare grâce à leur pouvoir calorifique :
Le pouvoir calorifique d'un combustible est l'énergie transférable sous forme de chaleur à l'environnement lors de la
combustion complète d'un kilogramme de combustible. Il s'exprime en J.kg-1.
Ex : H2 : Pc = 142.500 kJ.kg-1. Voir tableau page 196.
Rendement d'une réaction de combustion :
=
énergie  effectivement  reçue  par  le  système  à  chauffer
énergie  fournie  par  la  combustion  complète  du  combustible  utilisé
La différence sert à chauffer inutilement l'air ou les objets environnants.
3.
Enjeu écologique des combustions.
Les réactions de combustion mises en jeu dans le chauffage et les transports engendrent un phénomène de pollution néfaste pour
l'environnement.
Téléchargement