840905246 Page 1 sur 2 16/04/17
NOM : Prénom : Groupe :
Chap. P12
COMMENT ÇA TOURNE UNE PLANETE ?
Date
TP P11
Objectifs : - Retrouver les lois de KEPLER en les situant dans un contexte historique.
- Approfondir le cas d’un mouvement circulaire uniforme (déjà abordé en 1ère S)
Compte rendu :
1. Visualiser les SIMULATIONS pour t’aider à répondre aux questions en CONCLUSION.
2. Réaliser l’ETUDE DUN ENREGISTREMENT concernant le mouvement d’un mobile en mouvement circulaire uniforme.
BREF HISTORIQUE
Le polonais COPERNIC a révolutionné l’astronomie en proposant une description du mouvement des planètes dans le
système héliocentrique. Les mesures dont il disposait, lui permettaient d’affirmer que dans un férentiel héliocentrique,
l’orbite est circulaire. Il soulignait néanmoins que le centre du cercle ne coïncidait pas exactement avec le Soleil.
KEPLER est célèbre en astronomie pour les lois qui
portent son nom : Il bénéficia des travaux de BRAHE qui
passa vingt ans sur l’île de Hven à faire quantité de visées
astronomiques. Ainsi tout comme GALILEE, réfutant le
dogme d’un mouvement circulaire et uniforme, KEPLER
reprit les travaux de COPERNIC et expliqua le mouvement
apparent de Mars (dite rétrogradation de Mars).
Mais il est également célèbre car il a ouvert la voie à
NEWTON. En effet il fut l’un des premiers à comprendre
que le Soleil est la cause du mouvement des planètes par
l’action qu’il exerce sur elle. Hélas, ses tentatives pour
modéliser une telle action n’ont pas abouti...
PROBLEMATIQUE
Ce texte donne un bref historique de cette période charnière en
astronomie l’on passa d’une représentation dogmatique, datant
d’ARISTOTE et de PTOLEMEE, à une vision complètement
révolutionnaire qui permis à NEWTON de nous donner les
premières clés de la compréhension de l’univers. Essayons de
préciser certains thèmes abordés dans ce bref historique...
« KEPLER [...] expliqua le mouvement apparent de Mars (dite rétrogradation de Mars : voir photo
ci-dessous) » : Le choix du référentiel est-il essentiel pour la compréhension de ce mouvement ?
« KEPLER est célèbre en astronomie pour les lois qui portent son nom [...] réfutant le dogme dun
mouvement circulaire et uniforme [...] » : Qu’a-t-il découvert ? Quelles sont ces lois ?
« COPERNIC a [affirmé] que dans un référentiel héliocentrique, l’orbite est circulaire. Il soulignait
néanmoins que le centre du cercle ne coïncidait pas exactement avec le Soleil » : Qu’en est-il
exactement ?
SIMULATIONS
- Ouvre la page web crée par un professeur de l’académie d’Orléans-Tours : Elle te permettra de
rafraîchir ta connaissance du système solaire. N’hésite pas à faire (rapidement) les deux activités.
- Ouvre ensuite le logiciel TERRA ET CAELUM et trouve la simulation traitant de la rétrogradation de
Mars. Observe le mouvement du point de vue de Terre et du point de vue du Soleil : Essaye de
donner une explication de ce phénomène en précisant bien le référentiel. N’oublie que l’on voit la
rétrogradation de Mars depuis la Terre (on l’a représenté par une ligne de tirets ) !
- Toujours dans le logiciel TERRA ET CAELUM, trouve les simulations présentant les lois de KEPLER.
- Observe et essaye de les deviner SANS REGARDER L’AIDE ! Néanmoins voici quelques indices :
- La 1ère loi se nomme aussi « loi des trajectoires » : Essaye de l’énoncer.
- La 2ème est la « loi des aires » ? : Essaye de l’énoncer sachant que les secteurs représentés correspondent à des
durées égales de parcours de la planète sur son orbite.
- La 3ème « loi des périodes » ? Trouve la bonne relation parmi T/R, T/R² ou T/R3... T²/R, T²/R² ou T²/R3... T3/R, T3/R²
ou T3/R3... etc.
840905246 Page 2 sur 2 16/04/17
- Ouvre cette autre page web crée par le même professeur. Joue sur les divers paramètres afin d’en
savoir plus sur les ellipses.
- Change notamment l’excentricité en choisissant une valeur comprise entre (-0,85) et (+0,85).
Observe à chaque fois la vitesse de la planète.
- Essaye d’obtenir une trajectoire circulaire : Que peux-tu dire de la vitesse de la planète ?
- Dans le logiciel TERRA ET CAELUM il est possible d’utiliser une simulation comparable (voir
« Mouvement satellites ») tout en ayant la possibilité de visualiser les vecteurs vitesse et
accélération : Quelle différence vois-tu entre une trajectoire elliptique et une autre circulaire ?
L’axe passant par C et S est appelé grand axe : Sa
longueur est de 2a.
L’axe perpendiculaire s’appelle le petit axe : Sa
longueur est de 2b.
On montre aussi que :
- 1
a
b
.
- Justifie la définition du terme « excentricité » : Quelle
est son unité ?
- Pluton exceptée, Mercure est la planète dont
l’excentricité est la plus grande. En considérant les
valeurs de b/a et CS/a, explique pourquoi il est courant
de considérer les trajectoires des planètes comme des
« cercles excentrés ».
Planète
a (U.A.)
T
(années)
e
Mercure
0,387
0,240
0,206
Vénus
0,723
0,615
0,007
Terre
1,00
1,00
0,017
Mars
1,52
1,88
0,093
Jupiter
5,20
11,9
0,048
Saturne
9,51
19,4
0,056
Uranus
19,2
84,0
0,046
Neptune
30,0
165
0,010
Pluton
39,5
248
0,250
CONCLUSION
Pour étudier correctement le système solaire, dans quel référentiel faut-il se placer. Et pour
étudier le mouvement des satellites de la Terre (naturel ou pas) ?
Sans essayer d’énoncer précisément les lois de KEPLER, précise l’essentiel de ses
découvertes : Les planètes ont-elles un mouvement circulaire ? uniforme ? Justifie brièvement.
Montre que l’on peut considérer que les planètes (sauf Pluton) du système solaire ont une
trajectoire quasi-circulaire mais que néanmoins le Soleil n’est pas au centre : On parle de trajectoire
circulaire excentrée ou de « cercles excentrés ».
ETUDE D’UN ENREGISTREMENT
Comme les planètes ont une trajectoire quasi-circulaire, il est intéressant d’étudier ce cas de figure.
Tu disposes pour cela d’un enregistrement fait sur une table à coussin d’air.
- Note M0, M1, ..., Mi, ... les positions successives enregistrées. Détermine, par construction, le
centre O de la trajectoire circulaire de M. Donne une mesure de son rayon, noté r.
- Détermine la vitesse du point M pour quelques positions. La vitesse de M est-elle constante ?
- Le vecteur vitesse de M est-il constant ? Représente les vecteurs vitesse pour M2, M4, M6, M8...
- Détermine la vitesse angulaire (qui s’exprime en radian par seconde) du mobile autoporteur pour
quelques positions de M. Que dire de son mouvement ?
- Vérifie que la vitesse et la vitesse angulaire sont proportionnelles. Calcule le coefficient de
proportionnalité : Montre que v = r . .
- Représente les vecteurs accélération pour M3, M5, M7... : Décris-le. Déduis-en les
caractéristiques du vecteur somme des forces.
- Vérifie que, dans le cas d’un mouvement circulaire uniforme (M.C.U.), la valeur de l’accélération
est telle que : a = / r .
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !