Éditions Études Vivantes © 2002 - Autorisation de reproduire réservée aux utilisateurs de
Calcul Différentiel, 5e édition
Remarques concernant ce bloc d’instructions :
Ce sont les symboles « [ » et « ] » qui indiquent à MAPLE qu’on désire travailler avec
une structure de liste. C’est la raison pour laquelle evalf(solve(fprime=0)), qui
représente les valeurs des abscisses des points de tangente horizontale, a été encadré de ces
crochets.
Le problème demandait de déterminer les coordonnées des points de tangente horizontale. On n’a
trouvé que les abscisses de ces points. Le bloc d’instructions suivant permet d’obtenir les
coordonnées des deux points.
Remarques concernant ce bloc d’instructions :
« NomDeLaListe[ÉlémentVoulu] » est la syntaxe demandée par MAPLE pour isoler un
élément d’une liste. Ainsi, cette ligne d’instructions permet d’assigner au nom x1, la valeur
du premier élément de la liste nommée Solution.
La commande « eval(Expression, NomDeLaVariable =ValeurDésirée) » permet
d’évaluer une expression en une valeur donnée. Ainsi, cette ligne d’instructions permet
d’assigner au nom y1, l’image de l’abscisse x1 par la fonction f. Les coordonnées du
premier point de tangente horizontale sont donc, avec une précision de 10 chiffres
significatifs, (1,423232002 ; -13,55712358).
Les assignations aux noms x1, x2, y1 et y2 permettront de ne pas avoir à écrire les
irrationnels qu’ils représentent.
Pour s’assurer que les résultats trouvés sont pertinents, on peut utiliser la commande
« student[showtangent](NomDeLaFonction, NomDeLaVariable =
AbscisseDuPointDeTangente) » qui a déjà été présentée lors de la résolution du problème 6 e) des
problèmes de synthèse du chapitre 3 (page 117). Cette commande permet de représenter
graphiquement, dans un même plan cartésien, une fonction ainsi que la droite tangente à sa courbe