Leçon n°5 – La trigonométrie – Les fonctions trigonométriques
Faisons en premier lieu une petite mise au point. Au lycée, nous faisons la différence entre un
secteur angulaire, l’angle qu’il représente et la mesure de cet angle.
Explications :
y
I
x
Nous avons ici dessiné un secteur angulaire x
ˆy (portion du plan (P) comprise entre deux
demi-droites issues d’un même point)
Par contre, un angle est l’ensemble des secteurs angulaires ayant la même ouverture c’est-à-
dire superposables, nous avons déjà vu cela avec bi-points et vecteur, enfin, la mesure de
l’angle est un nombre caractéristique de l’ouverture du secteur. Au collège, la mesure d’un
angle se fait en degrés. Au lycée, en premier lieu, nous orientons le plan et nous avons donc
des mesures d’angles positives et négatives et d’autre part, nous mesurerons l’ouverture des
angles en radians.
Définition 1
Dans le plan (P), il a été choisi un sens trigonométrique direct(sens inverse des aiguilles
d’une montre) donnant des mesures positives et le sens contraire dit indirect donnant des
mesures négatives.
Définition 2
Pour mesurer les angles, nous utiliserons le cercle trigonométrique : cercle de rayon 1. La
mesure se fera en amenant l’angle au centre O du cercle et en prenant la longueur de l’arc
intercepté par le secteur angulaire. L’unité de longueur utilisée s’appelle le radian.
(Rayon R = 1)
Un angle correspondant à un demi cercle (angle plat) mesurera la moitié du périmètre du
cercle trigonométrique donc :
180° équivalent à π
ππ
π radians
(Périmètre du cercle trigonométrique : 2πR = 2π(1) = 2π)