n1nZ Z
A A
A
Z/2Z Z Z
M A M
{xi}iIM{rj}jJ
A(I)M ei7→ xiA=Z[X]
A I = (2, X)A
A K A
K K A
V K (vi)iIV
A V A
A V K
K A A =K
K A A =K
V W K A V
W K
A
AZ ZN
M A N M N M/N
M
A=Z/6Z2A3A2A3A
1
A M
A M n NM
An
A
M A M
ZNZ(N)
A
AnnN
M A N M N M/N
M
Q Z
Q0 1 Q
Q/Z
(ei)iIQjI(ei)iI\{j}
A M A x M
aA a 6= 0 ax = 0 M
M M Ann(M)
A=ZM
M
A A
A
Z/2Z Z Z
B A B
{xi}iIB{yj}jJ
A[Xi]iIB Xi7→ xiA k
k X k
1
A[X]
A A[X]A
A a, b, . . . A
pgcd(a, pgcd(b, c)) = pgcd(a, b, c)
pgcd(an, bn) = pgcd(a, b)nn1
pgcd(a, b)ppcm(a, b) = ab
pgcd(a, ppcm(b, c)) = ppcm(pgcd(a, b),pgcd(a, c))
ppcm(a, pgcd(b, c)) = pgcd(ppcm(a, b),ppcm(a, c))
A=Zpgcd(a, b) = Pk|a,k|bϕ(k)ϕ
A δ a =bq +r
δ(r)< δ(b) pgcd(a, b) = pgcd(b, r)
A=Zpgcd(na1, nb1) = npgcd(a,b)1
A=k[X]kpgcd(Xa1, Xb1) = Xpgcd(a,b)1
A=Z+iZC
AC Z 2
A
N:ANN(z) = |z|21
A A
N A u C
zA|uz|<1
1 + i1 + 2i A 2 5
p
p A
p
p= 2 p1 (mod 4)
⇔ ⇒
p A x2+ 1 = 0 A/pA
Z/pZ1p p ≡ −1
(mod 4)
k A k[X]X
k k[X]XiiN, i 6= 1
k[X]
m>2XmA
XnnNXmA
(X2, X3)A
m(Xm, Xm+1)A
pgcd(a, pgcd(b, c)) = pgcd(a, b, c)a=X2b=X5
c=X6pgcd(ca, cb) = cpgcd(a, b)a=X2
b=X3c=X3
X6
1 / 4 100%