21 Groupe orthogonal d`un espace vectoriel euclidien de dimension

2,3
E n 1,
EB0,
BdetB0(B) = 1
u∈ O(E) det (u) = ±1
O+(E) = {u∈ O(E)|det (u) = 1}
O(E)
O(E) = O(E)\ O+(E) = {u∈ O(E)|det (u) = 1}
O(E)
u∈ L(E)A
E A ∈ On(R).
O+
n(R) = {A∈ On(R)|det (A) = 1}
On(R)
O
n(R) = On(R)\ O+
n(R) = {A∈ On(R)|det (A) = 1}
On(R)
λ u ∈ O(E), λ =±1.
xE λ,
1 = x=u(x)=λx=|λ|x=|λ|
F E u ∈ O(E), F
u u (F)F, u (F) = F
u E x F, z F, y F
z=u(y)
u(x)|z=u(x)|u(y)=x|y= 0
u(x)F.
2,3
2
E2
B0= (e1, e2).
θ,
Rθ=cos (θ)sin (θ)
sin (θ) cos (θ)Sθ=cos (θ) sin (θ)
sin (θ)cos (θ)
θ θ,
RθRθ=RθRθ=Rθ+θ, SθSθ=Rθθ, RθSθ=Sθ+θ, SθRθ=Sθθ
Rθ, Sθ
R1
θ=RθS1
θ=Sθ
RθRθ=cos (θ)sin (θ)
sin (θ) cos (θ)cos (θ)sin (θ)
sin (θ) cos (θ)
=cos (θ) cos (θ)sin (θ) sin (θ)(cos (θ) sin (θ) + sin (θ) cos (θ))
cos (θ) sin (θ) + sin (θ) cos (θ) cos (θ) cos (θ)sin (θ) sin (θ)
=cos (θ+θ)sin (θ+θ)
sin (θ+θ) cos (θ+θ)=Rθ+θ
SθSθ=cos (θ) sin (θ)
sin (θ)cos (θ)cos (θ) sin (θ)
sin (θ)cos (θ)
=cos (θ) cos (θ) + sin (θ) sin (θ)(sin (θ) cos (θ)cos (θ) sin (θ))
sin (θ) cos (θ)cos (θ) sin (θ) cos (θ) cos (θ) + sin (θ) sin (θ)
=cos (θθ)sin (θθ)
sin (θθ) cos (θθ)=Rθθ
RθRθ=R0=InSθSθ=R0=In, R1
θ=Rθ
S1
θ=Sθ.
Sθ+θSθ=Rθ=SθSθθ, RθSθ=Sθ+θ, SθRθ=Sθθ.
S1
θ=SθS2
θ=I2Sθ2.
O+
2(R) = {Rθ|θR} O
2(R) = {Sθ|θR}
θ,
R1
θ=Rθ=tRθ,det (Rθ) = 1
Rθ∈ O+
2(R)
S1
θ=Sθ=tSθ,det (Sθ) = 1
Sθ∈ O
2(R).
2
A=a b
c d ∈ O2(R)C=dc
b a
A∈ O+
2(R),tA=A1=1
det (A)
tC=tC, A =C,
a=d b =c, A =ac
c a det (A) = a2+c2= 1 θ
a= cos (θ)c= sin (θ), A =Rθ.
A∈ O
2(R), A =C, d =a b =c,
A=a c
cadet (A) = (a2+c2) = 1θ a = cos (θ)
c= sin (θ), A =Sθ.
O2(R) = A=cos (θ)εsin (θ)
sin (θ)εcos (θ)|θRε= det (A)∈ {−1,1}
θ A ∈ O2(R),
]π, π].
R→ O+
2(R)
θ7→ Rθ
(R,+) O+
2(R) 2πZ
R
2πZO+
2(R).
O+
2(R)
Γ
1,RΓ
θ7→ e
R
2πZ,+,·)O+
2(R),
,·).
n3,O+
n(R)
O+
2(R) Γ Γ
[0,2π]t7→ eit
O
2(R)O+
2(R)
cos (θ)sin (θ)
sin (θ) cos (θ)7→ cos (θ)sin (θ)
sin (θ) cos (θ)1 0
01=cos θsin θ
sin θcos θ
O2(R)O+
2(R)O
2(R)
2,3
u E
θ u
B
Rθ=cos (θ)sin (θ)
sin (θ) cos (θ)
u E θ
uB0
Sθ=cos (θ) sin (θ)
sin (θ)cos (θ)
u∈ O+(E)B0O+
2(R),
Rθθ
BE, u ∈ O(E)
P1RθP, P ∈ O+(E)B0BP1RθP=Rθ
O+
2(R)
u∈ O(E)B0O
2(R),
Sθθ.
u∈ O+(E)
BtRθ=R1
θ=Rθ.
B B
0= (e1,e2),
B0B
0Q=1 0
01uB
0
Q1RθQ=1 0
01cos (θ)sin (θ)
sin (θ) cos (θ)1 0
01
=cos θsin θ
sin θcos θ=Rθ
uB.
u∈ O(E),
B0BP=Rθ
P1SθP=RθSθRθ=SθθRθ=Sθ2θ
u∈ O(E)S0=1 0
01B0R2
B=1
2(e1+e2),1
2(e1+e2), P =1
211
1 1 uB
S
0=01
1 0
u∈ O+(E)v∈ O(E), v uv=u1.
2
B0
θ θ,
SθRθSθ=SθθSθ=Rθ=R1
θ
uv∈ O(E)O(E)1
uv= (uv)1=v1u1
v, v uv=u1.
2
u∈ O+(E)Rθ
B, θ
θ]π, π],
θ.
θ={θ+ 2kπ |kZ} ∈ R
2πZ
u∈ O+(E)E.
θ
θ2π.
u∈ O+(E)x=x1e1+x2e2E,
u(x) = (cos (θ)x1sin (θ)x2)e1+ (sin (θ)x1+ cos (θ)x2)e2
u(x)|x= cos (θ)x2
1+x2
2= cos (θ)x2= cos (θ)xu(x)
detB0(x, u (x)) = x1cos (θ)x1sin (θ)x2
x2sin (θ)x1+ cos (θ)x2= sin (θ)x2
1+x2
2= sin (θ)x2
θ2π u
cos (θ) = u(x)|x
sin (θ) = detB0(x, u (x))
x
x̸= 0, θ x u (x).
θ]π, π],±θ.
uπ
2(f1, f2)
u(f1) = f2u(f2) = f1.
Id Id.
0,Id π
u θ /0, π
χu(λ) = cos (θ)λsin (θ)
sin (θ) cos (θ)λ
= (cos (θ)λ)2+ sin2(θ)sin2(θ)>0
Id 1
Id 1
1 / 24 100%

21 Groupe orthogonal d`un espace vectoriel euclidien de dimension

La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !