K=R C
K−E
G+
K∀x, y ∈E, x +y∈E
K∀x, y ∈E, x +y=y+x
K∀x, y, z ∈E, x + (y+z) = (x+y) + z
K∃x0∈E, ∀x∈E, x +x0=x0+x=x
E0E
K∀x∈E, ∃y∈E, x +y=y+x= 0E
x−x
GK×E→E
(λ, x)7→ λ.x
K∀x∈E, ∀λ∈K, λ.x ∈E
K∀λ∈K,∀x, y ∈E, λ.(x+y) = λ.x +λ.y
K∀λ, µ ∈K,∀x∈E, (λ+µ).x =λ.x +µ.x
K∀λ, µ ∈K,∀x∈E, (λµ).x =λ.(µ.x)
K∀x∈E, 1.x =x
λ.x =λx
E
K
©
GR R−
GC C−R
GKnK
GKNK
GFKX
FXX F K
GMn,p(K)K
GK[X]K
EK
G∀λ∈K,∀x∈E, λx = 0E⇐⇒ λ= 0Kx= 0E
G∀λ, µ ∈K,∀x∈E, (λ−µ)x=λx −µx
G∀λ∈K,∀x, y ∈E, λ(x−y) = λx −λy