E F
f:E→F f(λu) = λf(u)
f(u+v) = f(u) + f(v)λ u v E L(E, F )
E F L(E) = L(E, E)
E E
f Ker(f) = f−1({0}) = {x∈E|f(x)=0}
E f f f
E Im(f) = {f(x), x ∈E} ⊂ F
f(u) = f(v)u=v
{0}
F Im(f) = F
E F
E F f−1:F→E
f◦f−1F f−1◦f E
E F f ⇐⇒ f⇐⇒ f
ERn(e1,· · · , en)E
L(E)E
EMn(R)n
f(e1,· · · , en)
Mate1,··· ,en(f) (λij )i,j∈[1,n]λij
∀j∈[1, n], f(ej) =
n
X
j=1
λij ei.
j f(ej)ei
f g E E
f◦g f g
Mate1,··· ,en(f◦g) = Mate1,··· ,en(f)Mate1,··· ,en(g).
f
E
D:Rn[X]→Rn[X]
P(X)7→ P0(X)
(1, X, · · · , Xn)
(e1,· · · , en) (ε1,· · · , εn)E Mate1,··· ,en(f)
Matε1,··· ,εn(f)P
Mate1,··· ,en(f) = P Matε1,··· ,εn(f)P−1