1. Equations
Définitions :
• Une équation est une égalité qui n'est vérifiée que pour certaines valeurs de l’inconnue ou des inconnues.
• Les solutions d'une équation sont les nombres qui, substitués aux inconnues, transforment l'équation en
une égalité vraie.
• Résoudre une équation, c’est en trouver toutes les solutions.
Remarque : On demande la valeur exacte des solutions et non une valeur approchée, sauf mention contraire.
Si un nombre décimal est solution, on donnera son écriture sous forme de fraction irréductible
(par exemple, on répondra
plutôt que 0,75).
Définition :
Une équation du premier degré à une inconnue est une équation dans laquelle l’exposant de l’unique inconnue
vaut 1.
Exemple :  désigne un nombre inconnu : 5 + 3 = 3 − 2
Propriétés (admises) :
On transforme une équation en une équation qui a les mêmes solutions :
• en ajoutant (ou retranchant) le même nombre aux deux membres, quel que soit le signe de ce nombre ;
• en multipliant (ou divisant) les deux membres par un même nombre non nul, quel que soit le signe
de ce nombre.
Exemple : 5 + 3 = 3 − 2 donc d’après la première propriété, 5 + 3 − 3 = 3 − 2 − 3 c’est-à-dire 5 = 3 − 5
De même, on a : 5 − 3 = 3 − 5 − 3, c’est-à-dire 2 = −5.
On utilise maintenant la seconde propriété : 
=
. On obtient  =
.
2. Equation produit nul
Définition :
Une équation produit nul est une équation de la forme ( + )( + ) = 0, où , , et  sont des nombres.
Exemples : (3 − 2)( + 5) = 0 ; (2 + 5)= 0
Propriétés : Produit nul
• Si l’un au moins des facteurs d’un produit est nul, alors le produit est nul.
Autrement dit,  et  étant deux nombres : si  = 0 ou  = 0, alors  = 0.
• Si un produit est nul, alors l’un au moins de ses facteurs est nul.
Autrement dit,  et  étant deux nombres : si  = 0, alors  = 0 ou  = 0.
Exemple : (3 − 2)( + 5) = 0 donc d’après la règle du produit nul, 3 − 2 = 0 ou  + 5 = 0,
c’est-à-dire  =
ou  = −5.
3.
Inéquations
Définitions :
• Une inéquation est une inégalité qui n'est vérifiée que pour certaines valeurs de l’inconnue ou des inconnues.
• Les solutions d'une inéquation sont les nombres qui, substitués aux inconnues, transforment l'inéquation en
une inégalité vraie.
• Résoudre une inéquation, c’est en trouver toutes les solutions.
Propriétés (admises) :
On transforme une inéquation en une inéquation qui a les mêmes solutions :
• en ajoutant (ou retranchant) le même nombre aux deux membres, quel que soit le signe de ce nombre ;
• en multipliant (ou divisant) les deux membres par un même nombre strictement positif et en conservant
le sens de l’inégalité ;
• en multipliant (ou divisant) les deux membres par un même nombre strictement négatif mais en changeant
le sens de l'inégalité.
Exemple 1 : 5 + 3 > 3 − 2 donc d’après la première propriété, 5 + 3 − 3 > 3 − 2 − 3
c’est-à-dire 5 > 3 − 5.
De même, on a : 5 − 3 > 3 − 5 − 3, c’est-à-dire 2 > −5.
On divise maintenant les deux membres par 2 en conservant le sens de l’inégalité : 
>
.
On obtient :  >
. On représente les solutions sur une droite graduée :
]| (Le crochet non tourné vers la partie colorée indique que
n’est pas solution.)
Exemple 2 : 2 + 1 4 + 2 donc d’après la première propriété, 2 + 1 − 4 − 1 4 + 2 − 4 − 1
c’est-à-dire −2 1.
On divise maintenant les deux membres par (−2) en changeant le sens de l’inégalité : 

 .
On obtient : 
. On représente les solutions sur une droite graduée :
[| (Le crochet tourné vers la partie colorée indique que
est une solution.)
5
2
1
2
0
0
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !