ζ
(fn)nNA f x A
fn(x)
n+f(x)
fn:xR7→ x
n
nNx>0fn(x) = xn
1 + xn
xn
1+xnn∈ {1,5,20,50}
(fn)nNf:x7→
0 si x[0,1[
1
2si x= 1
1 si x]1,+[
x ε > 0n|fn(x)f(x)|6ε n
x|fn(x)f(x)|>1
4x1
xε, N > 0; ... N ε
x
nNx > 0fn(x) = Arctann+x
x(fn)nN
π
2·
(fn)nNfn(x) = xn
P
k=0
xk
k!
R+1
Arctann+x
xn∈ {1,5,20,50}xn
P
k=0
xk
k!n∈ {1,5,10,15}
(fn)nNf fn
cv.s.
n+f
xA, ε > 0,NN;n>N=⇒ |fn(x)f(x)|6ε.
N ε x fn(x) = xn
1 + xn
ε > 0x1N
|fn(x)f(x)|6ε N x
(fn)nNf fn
cv.u.
n+f
ε > 0xA|fn(x)f(x)|6ε
ε > 0,NN;xA, n >N=⇒ |fn(x)f(x)|6ε.
+
xA
|fn(x)f(x)| −
n+0.
f A kfkkfk,A
|f|A
fn
cv.u.
n+f fnfkfnfk
n+0
nNxRfn(x) = xn
(fn)nN[0,1] [0,1/2] [0,1ε] 0 <ε<1 [0,1[
fn(x) = x
nfn
cv.s.
n+f= 0 Rfnf=fn
S= [M, M]kfnfk,S =S
n
n+0
fn(x) = xn
1 + xn
kfnfk=1
2fnf1
[0,2] ε0>0S= [0,1ε0]
kfnfk,S =fn(1 ε0)
n+0,
[0,1ε0]
xn
1+xn[0; 0,9] n∈ {1,5,20,30}
fn(x) = Arctann+x
xkfnfk=π
4
I=]0, M]M > 0
kfnfk,I =fn(M)π
2
n+0
]0, M]
R+fn(x) = xn
P
k=0
xk
k!
f1kfnfk= 1
[0, M]R+
P
nN
fnPfngn=
n
P
k=0
fk
PfnxPfn(x)
Rn=
+
P
k=n+1
fn0
Pfn(fn)nN
R|cos x+ sin x|
cos(x2) + sin x
Rn
x|fn(x)|αnPαn
kRnk6
+
P
k=n+1
αk
n+0
P
nN
fnI
fnP
nN
kfnknN
Rn
kRnk
n+0
xA fn
|fn(x)|6kfnkP|fn(x)|Pfn(x)
xA n fnk>n|fk(x)|6kfkk
p>1
n+p
X
k=n+1
fk(x)
6
n+p
X
k=n+1
|fk(x)|6
n+p
X
k=n+1
kfkk6
+
X
k=n+1
kfkk
n+p
P
k=n+1
fk(x)
6
+
P
k=n+1
kfkkp
|Rn(x)|p+
|Rn(x)|6
+
P
k=n+1
kfkkxA Rn
kRnk6
+
P
k=n+1
kfkk
kRnk0
n+
xRnNfn(x) = xngn(x) = xn
n·
(fn)nN
]1,1]
[1 + ε, 1ε] 0 <ε<1
]1,1]
Pfn
]1,1[
[1 + ε, 1ε]
0<ε<1
]1,1[
(gn)nN[1,1]
Pgn
[1,1[
[1,1ε] 0 <ε<1
[1,1[
[1 + ε, 1ε] 0 <ε<1
]1,1[
1 / 14 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !