n n0=Kn
y y0=y
y0=y y(0) = 1
Rf(0) = 1
f0(0) = 1 A0Cf(0 ; 1) T0Cf
y=x+ 1
T0A0
Cf
f(α)f0(α) = f(α)
y=f0(α)(x−α) + f(α)⇔y=f(α)(x−α+ 1)
h f(α+h)≈f(α)(h+ 1)
α= 0 f(0) = 1 f(h) = h+1 f(2h) = (h+1)2f(3h) = (h+1)3
h= 0,1f(0) = 1 f(0,1) = 1,1f(0,2) = 1,21 f(0,3) = 1,331
f(0,4) = 1,4641
∀fRy0=y y(0) = 1 f
fRf0=y f(0) = 1
ϕRϕ(x) = f(x)×f(−x)
ϕ0(x) = f0(x)f(x)−f(x)f0(x)x f0(x) = f(x)ϕ0(x) = f(x)f(x)−
f(x)f(x) = 0 ϕ
ϕ(0) = f(0) ×f(−0) = 1 ∀x∈Rϕ(x) = 1
α f(α) = 0 f(α)×f(−α) = 1
0×f(−α) = 1
∀x∈Rf(−x) = 1
f(x)
y0=y y(0) = 1
g g0=g g(0) = 1
x g(x)6= 0 ψ ψ(x) = f(x)
g(x)
ψ0(x) = f0(x)g(x)−f(x)g0(x)
g2(x)=f(x)g(x)−f(x)g(x)
g2(x)= 0
ψRψ(0) = f(0)
g(0) = 1 ∀x∈Rψ(x)=1⇔f(x) = g(x)
exp y0=y
y(0) = 1
exp(0) = 1