n∈N
∀k∈J1, nK, Hk=X(X−1) · · · (X−k+ 1)
k!.
(H0, . . . , Hn)Rn[X]
∀k∈J1, nK, , ∀x∈Z, Hk(x)∈Z.
P∈Rn[X]P(x)∈Zx∈Z
n∈NPk=Xk(1 −X)n−kk∈J0, nK
(P0, . . . , Pn)Kn[X]
n∈N
∀P∈Rn[X],∃Q∈Rn[X], P =
n
X
k=0
Q(k).
a0, . . . , an∈R
ϕ:Rn[X]→Rn+1, P 7→ (P(a0), . . . , P (an)) .
ϕ
a0, . . . , an∈R
ϕ:R2n+1[X]→R2n+2, P 7→ P(a0), P 0(a0), . . . , P (an), P 0(an).
ϕ
p∈N∗
E=n(un)n∈N∈RN
∀n∈N, un+p=uno.
E
n∈Nn>2
f:Rn[X]→Rn[X], P 7→ P(X+ 1) + P(X−1) −2P(X).
fRn[X]
f(Xk)k∈J0, nK
Ker(f) Im(f)
Q∈Rn−2[X]
∃!P∈Rn[X], f(P) = Q P (0) = P0(0) = 0.
f∈L(E)
E
fn6= 0 x∈E(x, f(x),...fn(x))
E
fdim E= 0
E f ∈L(E)
∀x∈E, ∃n∈Nfn(x)=0.
f
E