∃!
/
∀x∈R, x2>0
f∃x∈R/ f(x)=0
x3+x+ 1 = 0 ∃!x∈R/ x3+x+ 1 = 0
E P (x)x x ∈E
(∀x∈E, P (x)) ( ∃x∈E / (P(x)))
(∃x∈E, P (x)) ( ∀x∈E / (P(x)))
f g R
f=g
(f=g)⇐⇒ (∀x∈R, f(x) = g(x))
f g x
(un)
((un) ) ⇐⇒ ∀n∈N, un6un+1
(un)
((un) ) ⇐⇒ ∀n∈N, un+1 6un
(un)
((un) ) ⇐⇒ ∃M∈R/∀n∈N, un6M
(un)
((un) ) ⇐⇒ ∃m∈R/∀n∈N, m 6un
(un)
((un) ) ⇐⇒ ∃m∈R,∃M∈R/ m 6un6M
∀x∈R,∃y∈R/ x 6y∃y∈R/∀x∈R, x 6y