R∈M3(R)R2=A
Q(A) = (A−2I3)(A−4I3)=0=(R2−2I3)(R2−4I3)
T(X) = (X2−2)(X2−4) = (X−√2)(X+√2)(X−2)(X+ 2)
RR[X]R
fRR
∀(x, y)∈R2, f x+y
2=1
2(f(x) + f(y)) f(0) = f(1) = 0
x y =−x
∀x∈R, f x−x
2=f(0) = 0 = 1
2(f(x) + f(−x))
∀x∈R, f(−x) = −f(x)f
x y = 2 + x
∀x∈R, f(x+ 2) −f(x) = f(x+ 2) + f(−x) = 2f(x+2)+(−x)
2= 2f(1) = 0
∀x∈R, f(x+ 2) = f(x)f
•f[0,2]
M∈R+,∀x∈R,|f(x)|6M
f∀x∈R,|f(x)|6M f
x y = 0
∀x∈R, f x+ 0
2=1
2(f(x) + f(0)
=0
)∀x∈R, f(x) = 2fx
2
x∀x∈R, f(2x) = 2f(x)
∀x∈R, f(4x) = 2f(2x) = 4f(x)
∀x∈R,∀k∈N, f(2kx) = 2kf(x)
f x0∈Rf(x0)̸= 0 ∀k∈N, f(2kx0)=2kf(x0)−→
k→+∞±∞
f x0f(x0)
f
fRR
∀(x, y)∈R2, f x+y
2=1
2(f(x) + f(y))
f(0) = f(1) = 0
x7→ ax +bR
∀x∈R, g(x) = f(x)−(ax +b)gR
a b g g(0) = g(1) = 0
g(0) = 0 ⇐⇒ f(0) −b= 0 ⇐⇒ b=f(0)
g(1) = 0 ⇐⇒ f(1) −a−b= 0 ⇐⇒ a=f(1) −b=f(1) −f(0)
g:x7→ f(x)−(f(1) −f(0))
a
x−f(0)
b
R
g(0) = g(1) = 0
∀x∈R, f(x) = ax +b f
R
an=+∞
0
sin t
n
t(1 + t2)dt
(an)
uMn(R)
∀M∈Mn(R), u(M) = 1
3(2M−tM)
u u
(u) det(u)
•n∈N∗t7→ sin t
n
t(1 + t2)]0,+∞[
sin t
n
t(1 + t2)∼
t→0
t
n
t(1 + t2)=1
n
1
1 + t2∼
t→0
1
nlim
n→+∞
sin t
n
t(1 + t2)=1
n