Telechargé par ZAHRI Driss

2.1.-Interaction-de-deux-OA

publicité
Modélisation quantique et réactivité
Partie 2. Orbitales moléculaires
2.1. Interaction de deux orbitales atomiques sur deux centres
Objectifs du chapitre
→ Notions à connaître :
F Méthode de Combinaison Linéaire des Orbitales Atomiques (CLOA).
F Interaction de deux orbitales atomiques sur deux centres :
o Recouvrement ;
o Orbitales liante, antiliante, non liante ;
o Energie d’une orbitale moléculaire ;
o Orbitale σ, orbitale π ;
→ Capacités exigibles :
F Identifier les conditions d’interaction de 2 OA : recouvrement et critère énergétique.
F Reconnaître le caractère liant, antiliant, non liant d’une OM à partir de sa représentation
conventionnelle ou d’une surface d’iso-densité.
F Identifier la symétrie σ ou π d’une OM.
F Proposer une représentation conventionnelle d’une OM tenant compte d’une éventuelle
dissymétrie du système.
F Justifier la dissymétrie d’une OM obtenue par interaction d’OA centrées sur des atomes
d’éléments différents.
En chimie organique, deux modèles sont utilisés pour décrire la structure électronique des molécules :
•
Le modèle de Lewis associé à la théorie VSEPR et à celle de la résonance :
o
o
•
Avantage : formalisme réduit (lettres, traits, cases, points)
Prévisions souvent suffisantes, mais parfois insuffisantes.
Le modèle des Orbitales Moléculaires issu d’une description quantique de la matière est
o
o
Plus long à mettre en œuvre
Fournit plus d’informations sur la molécule.
L’objet principal de ce chapitre est de décrire de façon qualitative la construction des orbitales moléculaires à partir des
orbitales atomiques des atomes impliqués dans la molécule.
Afin de limiter le formalisme mathématique, seule l’interaction de deux OA identiques sur deux atomes est envisagée d’un point
de vue formel. Les résultats obtenus dans les autres cas seront admis. Par ailleurs, les principes établis ici seront généralisés en
vue d’être utilisés dans les chapitres suivants.
Problématiques :
• Où se trouvent les électrons dans un atome polyélectronique ?
• Quelles valeurs d’énergie peuvent prendre les électrons ?
-1-
1. Combinaison de deux OA
L’objectif de cette partie consiste à montrer qu’il est possible de construire les orbitales décrivant les électrons au sein d’une
molécule à partir des orbitales atomiques des atomes la composant.
On considère un système de deux atomes identiques notés Aa et Ab. Ce système est constitué :
- de 2 noyaux
x
- de N électrons.
Ab
Aa
Choix du repère :
- Origine : le milieu des noyaux.
- Axe (Oz) : axe internucléaire.
y
z
1.1. Approximations nécessaires à la résolution
Une résolution de l’équation de Schrödinger est-elle envisageable ?
Rappeler le principe des approximations classiques utilisées pour la résolution ?
-
Approximation de Born-Oppenheimer :
-
Approximation orbitalaire :
1.2. Théorie CLOA
Disposant des expressions des OA (voir chapitres précédents), il est envisagé de construire les OM sur la base des OA des atomes
impliqués dans la molécule.
CLOA:
Les OM d’une molécule sont construites par Combinaison Linéaire des OA des atomes qui la composent.
=∑
avec χj : OA de l'un des atomes
Les expressions des OA χi étant connues, tout l’enjeu consiste à déterminer les valeurs des coefficients Cij.
Pour rendre cette tâche plus simple, il est d’usage de restreindre la base d’OA aux sous-couches de valence des atomes Aa et Ab,
voire, lorsqu’un degré de précision supplémentaire est recherché, aux OA inoccupées appartenant à des sous-couches proches
en énergie des sous-couches de valence.
-2-
1.3. Expression générale des OM issues d’une combinaison de 2 OA identiques
Soit ϕ, une OM construite par combinaison linéaire de 2 OA de valence des atomes Aa et Ab.
1.
Expression de φ :
2.
Densité de probabilité de présence :
ϕ2 représente la densité de probabilité de présence de l'électron autour d’un point M de l’espace :
`
3.
Normalisation de ϕ : ϕ doit être normée pour qu’elle ait un sens physique :
4.
Simplification des expressions : Les OA étant déjà normées, l’égalité précédente peut être simplifiée :
1.4. Intégrale de recouvrement
La condition de normalisation a fait apparaître un terme « couplé » faisant intervenir un OA de l’atome Aa et une OA de l’atome
Ab. Ce terme est d’une grande importance pour comprendre comment une OM représente la liaison covalente.
Intégrale de recouvrement entre les OA χa et χb :
=
χ χ dV
La valeur de l’intégrale de recouvrement dépend :
• des OA impliquées, χa et χb,
• de la distance entre les noyaux des atomes Aa et Ab : plus elle est faible, plus le
recouvrement est important.
-3-
Expl : Évolution de l’intégrale de recouvrement entre des OA 1s en fonction de la distance entre 2 atomes d’hydrogène
Pourquoi ce nom de "recouvrement" ?
=
χ χ dV
La valeur de χa tend à diminuer au fur et à mesure que l’on s’éloigne de l’atome Aa. Idem pour χb.
La valeur absolue de S est par conséquent maximale dans des zones de l’espace à la fois proches de Aa
et de Ab, c’est-à-dire pour des points situés entre les deux atomes quand ils sont proches. On dit qu’alors
leurs orbitales se recouvrent.
Expl : Représentation schématique avec une OA 1sa pour Aa et une OA 1sb pour Aa :
Aa
Ab
Aa
Ab
Interpréter en termes de probabilité de présence les termes suivants :
c ∭
χ dV + c ∭
c
Interpréter l’influence du signe de «
+
c
χ dV + 2 c c
∭
+
2c c
» sur la répartition des électrons.
-4-
χ χ dV = 1
= 1
2. Application à la molécule H2
2.1. Expression des OM
Soit une molécule H2 formée par combinaison de deux OA 1s : 1sa appartenant à Ha et 1sb à Hb.
Simplifier l’équation de normalisation en tenant compte de la symétrie du système :
Combien d’OM obtient-on par combinaison de 1sa et 1sb ?
Ce résultat peut être généralisé (admis) :
Intégrale de recouvrement entre les OA χa et χb :
Le nombre d’OM construites par combinaison linéaire d’OA est égal au nombre d’OA utilisées :
N OA combinées → N OM construites
Exprimer les OM construites :
Cas n° 1 : c
=c
=c
Cas n° 2 : Par analogie, c
= −c
=c
⇒
c + c
− 2c
=1
⇒
φ =
√
χ −χ
Remarque : Ces expressions sont valables dans le cas d’une combinaison de deux OA identiques centrées sur deux atomes
identiques. La méthode n’est pas généralisable à toutes les combinaisons de 2 OA. Des méthodes dont la description dépasse le
cadre du programme sont utilisées dans les autres cas.
-5-
2.2. Caractéristiques des OM ϕ+ et ϕLes expressions des OA χa et χb étant connues, et désormais également celles des coefficients ca et cb, il devient possible de
représenter les densités de probabilité de présence (ϕ2) le long de l’axe internucléaire.
¾
Etude de l’orbitale moléculaire ϕ+
(ϕ+)2
Densité de probabilité de présence :
Aa
0
Ab
z
Interpréter ce graphique
Quel lien peut-on faire avec le modèle de Lewis ?
OM liante :
La combinaison en phase de 2 OA conduit à la formation d’une OM liante. Dans une OM
liante, la probabilité de trouver des électrons dans la zone entre les atomes est non nulle.
Représentations possibles :
Avec conservation des formes des OA
¾
Avec courbe d’isodensité
Etude de l’orbitale moléculaire ϕ(ϕ-)2
Densité de probabilité de présence :
Aa
0
Interpréter ce graphique
-6-
Ab
z
La probabilité de trouver l’électron dans le plan médian de l’axe internucléaire est nulle. Cette OM est qualifiée d’anti-liante.
Elle présente un plan nodal.
OM anti-liante :
La combinaison en opposition de phase de 2 OA conduit à la formation d’une OM anti-liante.
Une OM anti-liante présente une surface nodale dans l’espace entre les atomes liés.
Représentations possibles :
Avec conservation des formes des OA
¾
Avec courbe d’isodensité
Diagramme énergétique :
L’injection des expressions des OM dans l’équation de Schrödinger permet de calculer leurs énergies associées. On trace alors
un diagramme illustrant les effets de la combinaison des deux OA sur la forme et l’énergie des OM.
Convention :
• Au centre, informations relatives aux OM construites (énergie, forme et remplissage).
• Sur les côtés, informations relatives aux OA avant leur combinaison (énergie, forme et remplissage).
Principaux points à retenir :
• OM construites : Combiner 2 OA conduit à 2 OM :
o L’une liante (recouvrement en phase), d’énergie inférieure aux OA
o L’autre anti-liante (recouvrement en opposition de phase), d’énergie supérieure aux OA
• Stabilisation/Déstabilisation : L’OM anti-liante est plus déstabilisée que n’est stabilisée l’OM liante.
Les énergies de stabilisation ΔE+ et de déstabilisation ΔE- sont proportionnelles au recouvrement S.
-7-
¾
Application à quelques molécules simples :
Rappeler les configurations électroniques à l’état fondamental de l’hydrogène et de l’hélium.
Remplir les diagrammes d’OM dans le cas des édifices suivants : H2, He2 et He2+. Conclure quant à l’existence de ces édifices.
Diagramme d’OM
E*
H2
E
E1s
ϕ+
Ha
E*
Hb
H2
E
E
ϕ-
E1s
E
ϕ+
Hea
E*
He2+
E
ϕ-
E
He2
Conclusion
Heb
He2
E
E
ϕ-
E1s
E
ϕ+
Hea
He2+
Heb
L’expérience montre cependant que le cation He2+ est stable. A la différence du modèle de Lewis, le modèle des OM permet de
décrire un tel édifice.
-8-
3. Combinaison de deux OA 1s d’énergies différentes
3.1. Principaux résultats
Dans le paragraphe précédent, il était question de combiner deux OA en tous points identiques (type d’OA et énergie). Il s’agit ici
de voir comment ces résultats sont modifiés lorsque les OA à combiner n’ont pas la même énergie.
Une telle situation peut permettre d’approcher une molécule formée à partir d’hydrogène et d’hélium : ϕ = ca.(1sa) + cb.(1sb)
Principaux résultats pour la combinaison de 2 OA d’énergies différentes (admis) :
•
Ce qui reste inchangé :
o Nombre d’OM : 2 OA → 2 OM construites (liante + an -liante)
o Energie : OM liante stabilisée, OM anti-liante déstabilisée (déstabilisation plus importante).
•
Ce qui change :
o Perte de symétrie : Les probabilités de présence ne sont plus identiques sur les deux atomes.
Les OM sont polarisées, c’est-à-dire plus développées sur un des atomes.
o Polarisation des OM : La polarisation est toujours en faveur de l’OA la plus proche en énergie.
o
Energie : Les énergies de stabilisation ΔE+ et de déstabilisation ΔE- :
Construire le diagramme d’OM dans le cas d’une combinaison d’OA s d’énergies différentes.
Rappeler le lien entre électronégativité et énergie des OA.
-9-
±
∝
Peut-on relier la polarisation des OM à l’électronégativité ?
La proportionnalité des énergies de stabilisation de l’OM liante et de déstabilisation anti-liante avec S2/ΔEOA revêt une importance
cruciale dans la compréhension des OM : un recouvrement faible et/ou une différence d’énergie élevée entre les OA à combiner
conduisent à une faible stabilisation de l’OM liante.
Représenter le diagramme d’OM dans le cas d’une combinaison de 2 OA proches en énergie, et 2 OA d’énergies différentes.
Energies des OA proches
Energies des OA très différentes
3.2. Application à l’exemple de HeH+
Remplir le diagramme d’OM de HeH+.
E
E
ϕ-
E*
E1sa
La molécule existe-t-elle ?
Attribuer à chaque OM sa représentation en isodensité.
sH
Eℓ
H
-10-
sHe
ϕ+
HeH+
He
4. Symétrie des OA : conséquence sur le recouvrement
4.1. Recouvrement de deux OA de symétrie identique
Quand 2 OA interagissent, il faut construire 2 OM, l’une avec recouvrement en phase, et
l’autre avec recouvrement en opposition de phases.
o
Expl 1 : Combinaison de deux OA s :
En phase
En opposition de phase
sa + sb
sa - sb
Signe du recouvrement
Positif
Négatif
Caractère de l’OM
Liant
Anti-liant
Représentation
Courbe d’isodensité
o
Expl 2 : Combinaison de deux OA pz :
Par analogie, construire les 2 OM obtenues par combinaison de 2 OA pz (axe des z pris horizontal)
En phase
En opposition de phase
Signe du recouvrement
Positif
Négatif
Caractère de l’OM
Liant
Anti-liant
Représentation
Associer à chaque OM sa représentation en isodensité :
-11-
o
Expl 3 : Combinaison de deux OA px :
En phase
En opposition de phase
pxa + pxb
pxa – pxb
Signe du recouvrement
Positif
Négatif
Caractère de l’OM
Liant
Anti-liant
Représentation
Courbe d’isodensité
Nature du recouvrement :
• Recouvrement axial σ : la zone de recouvrement coupe l’axe internucléaire.
• Recouvrement latéral π : les zones de recouvrement ne contiennent pas l’axe
internucléaire.
Indiquer sur les schémas précédents, la nature σ ou π de l’OM.
4.2. Recouvrement de deux OA de symétries différentes
o
Expl 4 : Combinaison de deux OA de symétries différentes comme s et px :
Représenter les 2 combinaisons possibles d’une OA 2px (centrée sur l’atome A) et d’une OA 2s (centrée sur l’atome B) :
Conclure quant à la valeur du recouvrement dans les deux cas.
-12-
Recouvrement et formation d’OM :
Deux OA ne partageant pas les mêmes propriétés de symétrie conduisent à un recouvrement nul.
Ces OA sont dites orthogonales. Leur combinaison ne peut donner d’OM.
Seules les OA partageant les mêmes propriétés de symétrie peuvent conduire par combinaison
à la formation d’OM.
Pourquoi ne peut-on pas combiner deux OA orthogonales ?
4.3. Proposition d’une méthode pour une construction simple des OM
Les paragraphes précédents ont mis en lumière deux critères à prendre en compte lors de la construction d’un diagramme d’OM :
un critère énergétique et un critère concernant le recouvrement des OA.
Critères à prendre en compte pour la construction des OM :
Les combinaisons d’OA à considérer pour construire les OM d’une molécule doivent répondre
aux critères suivants :
• Seules les OA de valence sont à prendre en compte
• La différence d’énergie entre les OA doit être suffisamment faible
• Les OA ne doivent pas être orthogonales.
La construction des OM débute donc par l’analyse rigoureuse des symétries des OA à combiner en vue de dégager des groupes
d’OA pouvant être combinées.
Ensuite, le critère énergétique permet de limiter les combinaisons aux termes les plus importants en écartant les couples d’OA
d’énergies trop éloignées.
Cette méthode sera utilisée de façon systématique dans les chapitres suivants.
-13-
Téléchargement
Explore flashcards