La loi Normale
LOI NORMALE
I Passage de la loi binomiale à la loi normale réduite
Soit une loi binomiale avec n grand et p et q non très petits, donnant donc une distribution
en cloche : on peut représenter graphiquement les probabilités P(k) données par cette loi binomiale
par des rectangles de hauteur P(k) et de base (k + 0,5) – (k – 0,5) = 1
- l'aire des rectangles est égale à P(k)
- la somme des aires est égale à 1
- le maximum se trouve vers np
Si n tend vers l'infini, on a un étalement de la
distribution.
012345
k
P(k)
On remplace alors k par la variable réduite npq
npk
k
)k(U
K
K
=
σ
μ
=
Si on veut représenter graphiquement la distribution par des rectangles comme précédemment, on
multiplie P(k) par npq pour conserver une aire des rectangles égales à P(k) = P(U)
On obtient la représentation suivante
- l'aire des rectangles est égale à P(k)
- la somme des aires est égale à 1
- le maximum se trouve vers l'origine
012
k
y
=P(k).
-2 -1
np
q
np
q
np
q
np
q
n
pq
Le théorème de Moivre ou de Laplace dit que lorsque n tend vers l'infini, la variable U tend à
devenir une variable aléatoire continue variant entre
et
+
. Le polygone formé par la partie
supérieure des rectangles tend vers une courbe d'équation :
2/
2
U
e
2
1
y
π
=
C'est la courbe de Gauss ou la courbe normale réduite.
1
La loi Normale
II La loi normale réduite
II.1 Sa forme
La fonction de densité de probabilité de la variable aléatoire U suivant une loi normale réduite est
notée :
2/
2
u
e
2
1
)u(
π
=ϕ
- elle est symétrique par rapport à l'axe
des ordonnées
- elle a son seul maximum pour u = 0
qui vaut à peu près 0,4
- elle a deux points d'inflexion pour u
valant –1 et 1
- elle est asymptotique à l'axe des u
- elle ne dépend d'aucun paramètre
- 68% des valeurs de u sont comprises
entre u=–1 et u=+1 et 95% des valeurs
de u entre u=-2 et +2.
0
0.1
0.2
0.3
0.4
0.5
-4 -3 -2 -1 0 1 2 3 4
ϕ(u)
u
68%
95%
La fonction de répartition se note (appelée aussi courbe sigmoïde)
ϕ=<=φ
u
dx)x()uU(obPr)u(
- elle a la forme d'un S ouvert
- elle présente un point d'inflexion et de
symétrie pour u = 0 et = 0,5 )u(φ
- et
0)( =−∞φ 1)( =+∞
0
0.2
0.4
0.6
0.8
1
-4-2024
φ(u)
u
Le calcul de l'intégrale donnant la fonction de répartition est généralement réalisé par une
approximation polynomiale. On trouve des tables donnant la valeur de pour différentes
valeurs de u dans les ouvrages de statistiques. Ces tables étant présentées de différentes façons, il
faut se référer à l'intégrale calculée et présentée en en-tête de la table. Ces tables concernent
généralement que les valeurs positives de U, les valeurs négatives étant déduites par raison de
symétrie de la loi.
)u(φ
2
La loi Normale
II.2 Ses moments
E(U) = µ = 0 : moyenne
1
2
U=σ : variance
13 0
γ
==μ : symétrie
24 3
γ
==μ : aplatissement
II.3 Autres caractéristiques
Médiane = Mode = Moyenne = 0
L'écart moyen absolu :
+∞
== 7979,0/2 )(
πϕε
duuµu
m
L'écart médian ou probable : 5,0)(Pr que est tel =<pp µuob
εε
donc
6745,0UU 75,0
2/5,01
p
=
==ε
II.4 Approximations
Sous les conditions d'un n grand et de p et q pas très petits, la pratique montre que
l'approximation de la loi binomiale par la loi normale n'est satisfaisante que si les produits np et nq
sont supérieurs à 5.
Dans le cas contraire (np ou nq inférieur à 5), n étant suffisamment grand, c'est la loi de
Poisson qui sert habituellement d'approximation à la loi binomiale.
III La loi normale généralisée
III.1 Formulation et forme
D'une manière générale, on appelle distribution normale de paramètre α et β toute distribution
continue dont la densité de probabilité est donnée par l'expression :
2
2
1
2
1
)(
=
β
α
πβ
ϕ
x
ex
On peut vérifier que les paramètres correspondent à la moyenne α=µ et à l'écart-type β=σ de la
distribution.
Les propriétés de la loi normale réduite s'étendent facilement à l'ensemble des distributions
normales.
La fonction de densité de probabilité a les caractéristiques suivantes :
- elle est symétrique par rapport à la droite x = µ
- elle admet un maximum en x = m qui vaut )2/(1 πσ
3
La loi Normale
- elle possède deux points d'inflexion en x =
σ
±
µ
- elle est asymptotique à l'axe des x
La fonction de répartition est toujours caractérisée par deux asymptotes et un point d'inflexion et de
symétrie en x = µ et F(x) = 0,5.
De plus, une modification de la moyenne µ correspond à un déplacement latéral des deux courbes
(fonction de densité et fonction de répartition), tandis qu'à un accroissement ou une diminution de
l'écart-type correspond un plus ou moins grand étalement de la courbe de densité et une plus ou
moins faible inclinaison de la fonction de répartition.
On dit que µ est un paramètre de position et que σ est un paramètre d'échelle.
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-4 -3 -2 -1 0 1 2 3 4 5 6
µ = 0
σ = 1
µ = 3
σ =
0
µ = 3
σ
= 1
µ = 1
σ = 2
ϕ (x)
x
0
0.25
0.5
0.75
1
-4 -3 -2 -1 0 1 2 3 4 5 6
µ = 0
σ
= 1
µ = 3
σ =
0
µ = 3
σ= 1
µ = 1
σ
= 2
φ (x)
x
Fonction de densité Fonction de répartition
III.2 Caractéristiques
Du fait de la symétrie de la distribution
13 0γ==μ : symétrie
On trouve aussi les moments suivants
4
4 3 σ=μ d'où
3
2=
γ
: aplatissement
Et les caractéristiques suivantes
σσ
π
=ε 7979,0
2
m
σ=ε 6745,0
p
La fonction génératrice des moments s'exprime par :
[]
2
22
)( t
t
xt
xeeEtm
σ
μ
+
==
4
La loi Normale
III.3 Passage de la loi réduite à la loi généralisée
Si on fait subir à la variable aléatoire U, suivant une loi normale réduite N (0 ; 1), la
transformation linéaire X = µ + σ U, on obtient une variable aléatoire X suivant une loi normale de
paramètres α=μ et β=σ : N (µ ; σ)
La réciproque est vrai :
si X suit une loi normale N (µ ; σ), alors la variable réduite U = (X-µ)/ σ suit une loi normale réduite
N (0 ; 1).
Cette propriété est utilisée pour le calcul des probabilités. Ainsi, si X suit une loi normale N (µ ; σ),
pour calculer tel que
p
xp)x()xX(obPr pp
=
φ
=
<, on lit dans la table de la loi normale réduite
et on en déduit
p
u
µux pp +
=
σ
III.4 Propriétés
Toute fonction linéaire de plusieurs variables normales indépendantes suit une loi normale.
Si U suit N (0 ; 1) et si X = a + b U alors X suit N (a ; b)
Si Y = c X + d alors Y suit N (ca+d ; cb)
Si X suit N ( ; ) et si Y suit N( ;
x
µx
σy
µy
σ
) et si Z = aX ± bY
alors Z suit N (a ± b ;
x
µy
µ2
y
22
x
2ba σ+σ )
III.5 Théorème central limite
Toute somme de variables aléatoires indépendantes tend vers une loi normale, à condition
qu'aucune d'elles n'ait une importance prépondérante par rapport aux autres.
Cette propriété a beaucoup de conséquences pratiques. On a vu par exemple que la loi binomiale
tend vers la loi normale, or la loi binomiale est une somme de variables alternatives (ou de
Bernouilli).
La convergence vers une loi normale est d'autant plus rapide que les lois de probabilité des
variables initiales sont symétriques.
Pour des variables aléatoires uniformes U(0;1), on considère qu'il y a convergence dès que l'on
somme 12 variables : la somme de 12 variables uniformes entre 0 et 1 suit une loi normale N (6 ; 1).
Exemple : la moyenne qui est une somme, suit très rapidement une loi normale si l'effectif est
supérieur à 30.
5
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !