γ∈Sn` i
γ{i, γ(i), . . . , γ`(i)}γ= (i γ(i). . . γ`(i))
i ` γ
σ= 2 3 4 1 = (1 2 3 4) = (2 3 4 1) = (3 4 1 2) = (4 1 2 3)
σ= 4 3 5 1 2 = (1 4) (2 3 5) = (3 5 2) (4 1) = . . .
n k c(n, k)c(0,0) = 1
c(n, k) = (n−1)c(n−1, k) + c(n−1, k −1)
2
Snn
2(n−1)!
`n
`(`−1)! = (n)`
`
Sn
(i, j)σ∈Sni < j σ−1(i)< σ−1(j)
σ=. . . i . . . j . . .
i < j σ(i)> σ(j)
I(σ)I(σ)σ
˜σ σ ˜σ(i) = σ(i)
I(σ) = I(σ−1I(σ) + I(˜σ) = n
2
1
4n(n−1)
σ∈Snn c(σ) = (c1(σ), . . . , cn(σ))
∀i∈[[1, n]] ci(σ) = #{j > i|σ(j)< σ(i)}i
σ n t(σ) =
(t1(σ), . . . , tn(σ)) ∀i∈[[1, n]] ti(σ) = #{j < σ−1(i)|σ(j)> i}
i i
t(σ) = c(σ−1)c(σ) = t(σ−1)