(Ak)k≥1
nE[A1] = P(A1) = 2
π
nN
n'2
ππ'2n
N
(Xn)n≥1
{0,1,...,9}
Pn≥1Xn10−n
p≥1l≥0Yl(Xlp+1, . . . , Xlp+p)
(a1, . . . , ap)p{0,...,9}1
1
nCard {l≤n:Yl= (a1, . . . , ap)} −→
n→∞
1
10p.
p≥1r∈ {1, . . . , p}
l≥1Zl= (Xlp+r, . . . , Xlp+r+p−1)
1
nCard {l≤n:Zl= (a1, . . . , ap)} −→
n→∞
1
10p.
(a1, . . . , ap)∈ {0,...,9}p
1
nCard {k≤n:Xk+1 =a1, . . . , Xk+p=ap} −→
n→∞
1
10p.
N⊂[0,1[
x∈[0,1[\N x = 0, x1x2. . . x
∀p≥1,∀a1, . . . , ap∈ {0,...,9},1
nCard {k≤n:xk+1 =a1, . . . , xk+p=ap} −→
n→∞
1
10p.
x
|Xn| ≤ 9n≥1
X
n≥1|Xn10−n| ≤ X
n≥1
9.10−n= 1.
Pn≥1Xn10−n
X
0≤X≤1n≥1
k∈ {0,...,10n−1}
Pk
10n≤X < k+ 1
10n=P(X1=kn−1, . . . , Xn=k0) = 10−n,