n∈N
n=a2+b2a, b ∈N
Σ = {n∈N/∃a, b ∈Nn=a2+b2}.
Z[i] = {a+ib ∈C/ a, b ∈Z}
N(a+ib) = |z|2=a2+b2
p∈N
p∈Σ⇐⇒ p= 2 p≡1 [4].
p∈Σ⇐⇒ pZ[i].
p∈Σp=a2+b2= (a+ib)(a−ib)p
a6= 0 b6= 0 a+ib a −ib Z[i]∗=
{1,−1, i, −i}pZ[i]
p=zz0z, z06∈ Z[i]∗={1,−1, i, −i}N(p) =
N(z)N(z0) = p2N(z), N(z0)6= 1 p=N(z) = N(z0)
p=N(z) = N(a+ib) = a2+b2∈Σ
Z[i]
pZ[i]⇐⇒ (p)
⇐⇒ Z[i]/(p).
Z[i]∼
=Z[X]/(X2+ 1) ϕ:Z[X]→Z[i]
ϕ(X) = i ϕ P ∈Z[X]
ϕ(P) = 0 P X2+1 P= (X2+1)Q+R
ϕ(P)=0 R(i)=0 R61 (1, i)
R= 0 Ker(ϕ)=(X2+ 1) Z[X]/Ker(ϕ)∼
=Z[i]
Z[i]/(p)∼
=Z[X]/(X2+ 1)/(p)
∼
=Z[X]/(X2+ 1, p)
∼
=Z[X]/(p)/(X2+ 1)
∼
=(Z/pZ)[X]/(X2+ 1) = Fp[X]/(X2+ 1).