f f(x) = 1 + 2x+|x|
ln(x)
f Df
f Dfg(x) =
2(ln x)2+ ln x1
g(x)
f
(x7→ ln x)xR
+(x7→ ln x)x= 1 1
ln x
xR
+\ {1}. Df=R
+\ {1}
xR
+\ {1} |x|=x
f(x) = 1 + 2x+x
ln(x).
fDfDfxDf
f0(x) = 2 +
1×ln xx×1
x
(ln x)2
=2(ln x)2+ ln x1
(ln x)2.
xDf,(ln x)2>0f0g(x) = 2(ln x)2+ ln x1
X= ln x X ]−∞ ; +[ 2X2+X1
∆=124×2×(1) = 9 >0
X1,2=1±3
4
X1=1X2=1
22X2+X1
X
2X2+
X1
−∞ 11
2+
+00+
X= ln x x =eXX=1x=e1X=1
2x=e1/2
lim
X→−∞ eX= 0 limX+eX= +
g(x)
x
g(x)
0e1e1
2+
+00+
f x = 1 f
x
g(x)
f0(x) =
g(x)
(ln x)2
f(x)
0e1e1
2+
+0 0+
+0 0+
1 + e1
1 + e1
1+4e1/2
1+4e1/2
x+10
x+ 1 3x+ 3
x2+ 1 3.(E)
(E)P(x)
Q(x)0P Q
1P P
(E)
x+10
x+ 1 3x+ 3
x2+ 1 3
x+10
x+ 1 3x+ 3
x2+ 1 30
x(x+ 1)(x2+ 1) + 10(x2+ 1) (3x+ 3)(x+ 1) 3(x+ 1)(x2+ 1)
(x+ 1)(x2+ 1) 0
x(x3+x+x2+ 1) + 10x2+ 10 3x23x3x33x33x3x23
(x+ 1)(x2+ 1) 0
x42x3+ 5x28x+ 4
(x+ 1)(x2+ 1) 0,
(E)P(x)
Q(x)0P(x) = x42x3+ 5x28x+ 4
Q(x)=(x+ 1)(x2+ 1)
P(1) = 1 2+58 + 4 = 0 1 P P (x1)
x42x3+ 5x28x+ 4 x1
(x4x3)x3x2+ 4x4
x3+ 5x28x+ 4
(x3+x2)
4x28x+ 4
(4x24x)
4x+ 4
(4x+ 4)
0
x
P(x) = (x1)(x3x2+ 4x4) = (x1)Q2(x).
P Q2(1) = 0 Q2
(x1)
1
Q2Q32
xR, Q2(x)=(x1)Q3(x).
Q32a, b, c x
Q3(x) = ax2+bx +c
x3x2+ 4x4=(x1)(ax2+bx +c)
x3x2+ 4x4=(x1)(ax2+bx +c)
x3x2+ 4x4 = ax3+bx2+cx ax2bx c
x3x2+ 4x4 = ax3+ (ba)x2+ (cb)xc
a= 1
a+b=1
b+c= 4
c=4
a= 1 b= 0 c= 4 R(x) = x2+ 4
Q(x) = (x1)(x2+4) P(x)=(x1)2(x2+ 4)
x2+ 4 2
∆=024× ×1×4 = 16 <0
P(x) = (x1)2(x2+ 4)
P(x)
Q(x)P(x) = (x
1)2(x2+ 4) Q(x) = (x+ 1)(x2+ 1) P Q
(x+ 1) (x2+ 1)
x
P(x)
Q(x)
P(x)
Q(x)
−∞ 11+
+ + 0+
0+ +
+0+
(E)S= ]−∞ ;1[ ∪ {1}
R
bxc+1
2=|x|.
x n Zx[n;n+ 1[ bxc=n
n+1
2=|x|.
n+ 1 0
n+ 1 0n≤ −1n+1
2≤ −1
2<0|x| ≥ 0
n+ 1 >0n0nZ
n+1
2=x,
x[n;n+ 1[ x=n+1
2
nNx=n+1
2
bxc+1
2=n+1
2+1
2=n+1
2
|x|=|n+1
2|=n+1
2,
x=n+1
2nN
S=n+1
2|nN
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !