télécharger le PDF

publicité
c Éditions H&K
Publié dans les Annales des Concours
1/18
CCP Physique 1 PSI 2000 — Corrigé
Ce corrigé est proposé par Julien Derr (École Supérieure de Physique et de Chimie
de Paris) ; il a été relu par Nicolas Wawresky (Mines de Paris) et Jean-Yves Tinevez
(ENS Lyon).
L’épreuve se compose de deux problèmes indépendants.
Le premier problème, consacré à l’électromagnétisme, est lui-même divisé en trois
parties globalement indépendantes. Il s’agit d’abord de généralités sur l’énergie électrostatique et sur la puissance électromagnétique. Ensuite, on considère la pression
de radiation comme force de sustentation d’un aéronef.
Le second problème, consacré à la thermodynamique, est lui aussi composé de
parties indépendantes. Là encore, il s’agit d’abord de généralités sur la calorimétrie
et la variation d’entropie. Enfin, on étudie de façon plus détaillée le fonctionnement
d’une machine thermique.
Téléchargé gratuitement sur www.Doc-Solus.fr .
c Éditions H&K
Publié dans les Annales des Concours
2/18
Indications
Champ éléctrostatique. Énergie éléctrostatique.
1.1 En cas de doute, revenir à la définition de W.
1.3 Ne pas considérer trop d’interactions.
1.5 Utiliser l’équation de Maxwell-Gauss.
1.7 Exprimer la dépendance en R de chaque terme.
1
2.1.c Ne pas oublier que la moyenne d’un cos2 vaut .
2
Π
2.1.e Persévérer dans le calcul de ; le résultat doit être remarquable.
w
2.2.a Exprimer la conservation de la puissance.
2.2.b Utiliser le fait que le vecteur de Poynting est la puissance surfacique à la
distance R.
3.5.a Faire un bilan de quantité de mouvement avant et après le choc.
3.6.a Le rendement est, par définition, le rapport de l’énergie utile sur l’énergie
utilisée.
3.9 Le système le plus simple est constitué de deux lentilles.
Calorimétrie, variation d’entropie, échanges de chaleur.
A.1 Exprimer la puissance de chauffe sur deux périodes différentes.
B.1 Égaliser les transferts thermiques échangés.
B.4 Utiliser un argument mathématique.
dθ
D.1 Tracer la courbe
= f (P).
dt
D.2 Considérer deux périodes différentes : avec ou sans résistance.
D.3 Égaliser le transfert thermique échangé pendant un temps dt où la température
varie de dθ.
D.5 La constante de temps est caractéristique de la vitesse de décroissance exponentielle.
D.7 Faire le même raisonnement qu’à la question D.3.
Téléchargé gratuitement sur www.Doc-Solus.fr .
c Éditions H&K
Publié dans les Annales des Concours
3/18
Champ éléctrostatique. Énergie éléctrostatique.
1
Calcul de l’énergie éléctrostatique
1.1 Par définition, l’énergie potentielle W est l’énergie dont dérive la force électrique
→
−
→
−
f = q E . On a donc :
−−→
→
−
q E = − grad (W)
−−→
−−→
−q. grad (V) = − grad (W)
ou encore
On obtient alors l’énergie potentielle électrique à une constante près
W = q.V
1.2 D’après la question précédente, on a Wij = qi Vj (Mi ) + C où Vj (Mi ) est le
potentiel créé par la charge qj à l’endroit de la charge qi :
qj
qi qj
Vj (Mi ) =
donc
Wij =
+C
4πε0 rij
4πε0 rij
La condition
lim
rij →+∞
Wij = 0 annule la constante C, d’où
Wij =
qi qj
4πε0 rij
1.3 Pour n charges, l’énergie potentielle totale est la somme des énergies potentielles
entre deux particules. Si V(Mi ) représente le potentiel créé à l’endroit de la charge
qi par toutes les autres charges, on peut alors écrire :
W=
n
1 P
qi V(Mi )
2 i=1
Le facteur 1/2 vient du fait que l’on compte deux fois chaque interaction puisque l’on
somme sur toutes les charges.
1.4 Dans le cas où les charges sont réparties de manière continue il suffit de changer
de schématisation par rapport à la question précédente :
– la somme devient une intégrale sur le volume ;
– qi devient dq = ρdτ .
ZZZ
1
Par conséquent
W=
ρV(M) dτ
2
Ω
→
−
ρ
1.5 Le théorème de Gauss provient de l’équation de Maxwell div ( E ) =
; on
ε0
peut donc remplacer ρ dans l’équation précédente, ce qui donne :
ZZZ
→
−
1
W=
ε0 . div ( E )V(M) dτ
2
Ω
La charge n’apparaît plus dans l’expression de
Téléchargé gratuitement sur www.Doc-Solus.fr .
c Éditions H&K
Publié dans les Annales des Concours
4/18
→
−
dW
1
= ε0 . div ( E )V(M)
dτ
2
De plus, nous verrons dans la suite que cette expression est plus facilement exploitable.
→
−
→
−
→ −−→
−
1.6 La formule de l’énoncé donne : V. div ( E ) = div (V. E ) − E . grad V, donc le
resultat de la question 1.5 se réécrit :
ZZZ
→
−
→ −−→
−
1
(div (V. E ) − E . grad (V))dτ
W = ε0
2
Ω
ou encore
1
ε0
2
W=
ZZZ
→
−
→−
−
→
(div (V. E ) + E . E )dτ
Ω
W est donc la somme de deux termes :
ZZ
ZZZ
− −
→
→
1
1
W=
ε0 V. E . d S +
ε0 E2 dτ
Σ 2
Ω 2
1.7 Lorsque Ω est fini et Σ tend vers l’infini, regardons la contribution du flux :
– V varie en 1/R
– E varie en 1/R2
– S varie en R2
Au final, le flux s’exprime en 1/R. Ainsi, sa contribution tend vers 0. On en déduit,
pour R tendant vers l’infini :
dW
1
= ε0 E 2
dτ
2
1.8 Dans le cas d’un condensateur plan, on sait que
E=
V
Q
=
e
ε0 S
L’énergie électromagnétique W s’écrit donc
W=
1
1
1
CV2 = QV = (ε0 SE).(Ee)
2
2
2
dW
1
= ε0 E 2
dτ
2
d’où
On retrouve bien le résultat théorique.
2
Puissance transmise par une onde éléctromagnétique
2.1.a Pour l’onde éléctromagnétique dont le champ électrique s’écrit
→→
−
−
→
→
E = E 0 .−
u . cos( k .−
r − w.t)
→
−
le vecteur k est le vecteur d’onde qui représente la propagation spatiale de l’onde.
Son module vaut
Téléchargé gratuitement sur www.Doc-Solus.fr .
Téléchargement