Conventions et priorités (série d'opération)
I. Expressions sans parenthèses
Activité 1 page 10
1. on considère les deux nombres A et B ci-dessous. Les calculer astucieusement, c'est à dire en
regroupant certains termes pour faciliter les calculs.
𝐴 = 4,5 + 2,6 + 3 + 5,5 + 7,4
𝐵 = 0,25 + 1,2 + 0,75 + 0,8.
Regle 1
S'il n y a pas de parenthèses, et s'il n y a que des additions, on peut associer les termes dans
n'importe quel ordre.
2. Voici des expressions contenant des additions et des soustractions, sans parenthèses.
Comment calculer ces nombres C, D, E et F? peut-on établir une règle pour faciliter les calculs?
𝐶 = 223 −4−11 𝐷 = 19 −6−13 + 8
𝐸 = 19 −6−8+13 𝐹 = 10,5 − 9,6 + 1,1 − 2.
Régle 2 dans une suite d'additions et de soustractions sans les parenthèses, on effectue les calculs de
gauche à droites (c'est à dire dans le sens de l'écriture).
Exemple pour 𝐺 = 19 − 6 − 8
Si on effectue les calculs dans le sens de la lecture, il vient
𝐺 = 19 − 9 − 8 = 10 − 8 = 5
Mais si d'abord 9 − 8 = 1, 𝑖𝑙 𝑣𝑖𝑒𝑛𝑡 19 − 9 − 8 = 18. résultat différent du précédent.
Activité 2
Benjamin a acheté quatre bouteilles de jus de fruits à 1,55 euros l'une.
Avant cet achat, il disposait de 12 euros.
1. Quelle somme lui reste-t-il après son achat? il lui reste 5,8
2. par quelle opération a-t-il fallu commencer le calcul? par la multiplication
3. Ecrire l'expression qui permet de calculer la somme restant à Benjamin. 12-1,55×4=5,8
S'il n y a pas des parenthèses et s'il y a dans un même calcul des multiplications avec des additions ou
des soustractions alors on ne doit pas effectuer le calcul dans le sens de la lecture.
Règle 3
les multiplications sont calculées avant les additions et les soustractions.
On dit que la multiplication est prioritaire par rapport à l'addition et la soustraction
exemple calculer A= 25+3×2
Remarque de la même façon si on a la division
Exemple
𝐶𝑎𝑙𝑐𝑢𝑙𝑒𝑟 25 45/9 = 25 − 5 = 20
On peut déduire
S'il n y a pas des parenthèses et s'il y a dans un même calcul des divisions avec des additions ou des
soustractions alors on ne doit pas effectuer le calcul dans le sens de la lecture.
Règle4
les divisions sont calculées avant les additions et les soustractions.
On dit que la division est prioritaire par rapport à l'addition et la soustraction
II. Expressions avec les parenthèses
Activité
Tous les jours, Sidney achète deux baguettes de pain à 0,90 euros l'une et un journal à 1,10. le lundi
matin, elle disposait d'un budget de 25 euros pour ses achats.
1. Calculer le montant de ses achats au cours d'une journée.
2. Combien aura-t-il le dimanche soir?
3. quelle somme lui restera-t-il le dimanche soir?
4. parmi les expressions suivantes, laquelle permet de calculer la somme restant à Sidney le
dimanche soir?
𝐴 = 25 (2 × 0,9 + 1,1) 𝐵 = 25 (2 × 0,9 − 1,1)× 7
𝐶 = 25 − (2 × 0,9 + 1,1) × 7.
Règle5 Si dans une suite d'opération, il y a des parenthèses, il faut commencer par effectuer les
calculs qui sont situés à l'intérieur de ces parenthèses.
III. Conversion d'écriture
Règle 6
Dans certains cas, pour alléger l'écriture d'une expression, on n'écrit pas le signe:
le signe × ne s'écrit pas entre un nombre et une lettre ;
le signe × ne s'écrit pas entre deux lettres ;
le signe × ne s'écrit pas entre un nombre et une parenthèse;
IV. Développer, factoriser une expression
Propriété
k, a et b désigne des nombres quelques. Les égalités suivants sont toujours vraies:
On développe on développe
𝑘(𝑎 + 𝑏) = (𝑎 + 𝑏)𝑘 = 𝑘𝑎 +𝑘𝑏 𝑒𝑡 𝑎 𝑏, 𝑘(𝑎 − 𝑏) = 𝑘𝑎 𝑘𝑏.
On factorise on factorise
Exemple 14(6 + 9) = 14 × 6 + 14 × 9 = 84 +126
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !