L-P-Bourguiba de Tunis Durée : 2 H
Devoir de Mathématiques n°5
Prof : Ben Jedidia Chokri Date : 23/4/2013 Classe : 4
ème
Math 2
EXERCICE 1 : (4 points)
Le plan P est muni d’un repère orthonormé
j,i,o
Soit
la courbe d’équation : 9x
2
+4y
2
-18x-27=0
1.a.Démontrer que
est une conique dont on précisera les foyers F et F’et les sommets .
b.Construire
2 .a.Ecrire l’équation de la tangente T à
au point M d’abscisse 2 et d’ordonnée positive
b.Montrer que la normale N en M est bissectrice de
EXERCICE 2 : (6 points)
On dispose de deux urnes et d’un dé cubique bien équilibré dont les faces sont numérotées
De 1 à 6.
L’urne U
1
contient trois boules rouges et une boule noire.
L’urne U
2
contient deux boules rouges et deux boules noires
Une partie se déroule de la facon suivante :le joueur lance le dé ;
si le résultat est 1,il tire simultanément deux boules de l’urne U
1
,
si non ,il tire successivement et sans remise deux boules de l’urne U
2
.
On considère les évenements suivants :
A : obtenir 1 en lancant le dé
B : obtenir deux boules rouges.
1.Déterminer la probabilité de l’évennement A.
2. a.Déterminer la probabilité de l’évennement B.On pourra s’aider d’un arbre pondéré .
b.Sachant que les jetons obtenus sont rouges.
Calculer la probabilité qu’ils proviennent de U
1
.
3.Soit X la variable aléatoire égale au nombre de boules rouges obtenues
a.Etablir la loi de probabilité de X.
b.Calculer E(X).
4.On convient qu’une partie est gagnée lorsque les deux boules tirées sont rouges.
Une personne joue 5 parties indépendantes (en revenant à la situation initiale après
chaque partie).
Soit N un entier compris compris entre 1 et 5.
On considère l’évenement la personne gangne au moins N parties.
A partir de quelle valeur de N la probabilité de cet évenement est-elle inférieure à 1/10
EXERCICE 3 : (4 points)
Dans l’espace E muni d’un repère orthonormé direct
,
on considère les points A(1, 1,1), B(1,2,3), C(0,0,1), et D(1,-1,-1)
1. Montrer qu’une équation du plan P passant par A,B et C est: 2x-2y+z-1=0
2. Soit la sphère (S) dont une équation est :x
2
+y
2
+z
2
+2x-4y-2z-3=0
Montrer que S et P se coupent suivant un cercle C dont on présira le centre et le rayon.
3.Déterminer une équation de la sphère S’ coupant P suivant le cercle C et passant
par D
4.Ecrire les expressions analytiques de l’homothétie h de rapport k >0
qui transforme S en S’