E3
P
e
P P P
P(
E3)P
E3P
e
M
=PP(
E3)
(
(
e
M)
P(
E3)
P(
E3)
P
e
P
/{0}
=
=
p:
E/{0} → P(E)
~u 7→ p(~u) =
(~u)
ED
E2
D
D ∞DD
e
D
E2e
D
E3
E2
E3P
E3
e
P P
E3
e
Me
Pe
D
P D
D P ϕ= 1 ϕ
P D
e
Pe
D
E
E2(
1,
2,
0)
(~u1, ~u2, ~u0)~u0
~u0=k1~u1+k2~u2k1, k2
~e1=k1~u1, ~e2=k2~u2~e0=~u0~e1+~e2
~u
(~u)
~u B(~e1, ~e2) : ~u = T ~e1+ Z ~e2
6=
1
(
1,
2,
0,
) B(~e1, ~e2)Rp
Φ~u1, ~u2
½Φ(~u0, ~u2) = k1Φ(~u1, ~u2),Φ(~u, ~u2)=Tk1Φ(~u1, ~u2)
Φ(~u0, ~u1) = k2Φ(~u2, ~u1),Φ(~u, ~u1) = Z k2Φ(~u2, ~u1)
Z6= 0 (
6=
1)
T
Z=Φ(~u0, ~u1)
Φ(~u0, ~u2).Φ(~u, ~u1)
Φ(~u, ~u2)
(
1,
2,
0)
E2
E2
=
~e1, ~e2, ~e0=~e1+~e2X ~e1+Z~e2
E
0
E2(
i(~ui))1,2,3,4
~ui
i
[
1,
2,
3,
4] = Φ(~u3, ~u1)
Φ(~u3, ~u2)ÁΦ(~u4, ~u1)
Φ(~u4, ~u2)
Φ
6=
1[
1(~e1),
2(~e2),
3(~e1+~e0) :
4(k~e1+~e0) ] = k
e
M1,e
M2,e
M3,e
M4
(
( e
M1),
( e
M2),
( e
M3),
( e
M4))
E2
[e
M1,e
M2,e
M3,e
M4]
e
D
RbDe
Mi
αi, βi
δi,j =¯¯¯¯αiαj
βiβj¯¯¯¯[e
M1,e
M2,e
M3,e
M4] = δ3,1
δ3,2.δ4,1
δ4,2
D
D ∞DRb
(1,1) δ1,i =αi+βi= 1
[D,M2,M3,M4] = δ4,2
δ3,2
D
ti i Ra(
AB,A) (αi, βi) = (ti, ti)
δi,j =(titj)
[ M1,M2,M3,M4] = t3t1
t3t2.t4t1
t4t2
[t1, t2, t3, t4]
[ M1,M2,M3,M4] = M3M1
M3M2.M4M1
M4M1
De
M1Dδ1,j = 1
[D,M2,M3,M4] = t4t2
t3t2
t1→ ∞
tRb[D,A,B,M ] = [ ,0,1, t ] = t
e
D −1
E2
D
~
i(a+b)(c+d) = 2(ab +cd)
2/b = 1/c + 1/d b c, d
[ ] a=b a2=bc |a|
(c, d)
D2b=c+d b (c, d)
e
D
[
1,
2,
0]e
D
D D
~
i=
OΩ [
1(
~
i),
2(O),
0(Ω)]
De
D Ra(
~
i, O)
(M) Dt
~
i+ O
=T
~
i+ Z O
Ra
e
D D
Rb
e
D
( e
M) e
Me
DC = A/2+B/2M = T A/2 + Z B/2
=αA + βB
Rb
Rp
D(α0, β0)
Rb(α, β)e
M
=(α/α0, β0)
1
2D
0D
=(α, β)
( e
M)
f
E2
E2
f
f
E2
=f
h(
) h
E2
h(
(~u)) =
(f(~u))
=
E2
E2
h
1(~e1),
2(~e2),
0(~e1+~e2),
1(f(~e1)),
2(f(~e2))
0(f(~e1) + f(~e2))
(k~e1+~e2)
(kf(~e1) + f(~e2)).
E2e
D
h
E2he
Me
D
(f(e
M) h(
( e
M) h
f h e
D D
hD D
(fD
ϕ(f(M)) 6= 0 ϕf
Dϕ(f(M)) ϕ(f(N)) = ϕ(f(
NM)) = 0
hD Ra(
~
i, +t
~
i a =ϕ(f(0)) 6= 0
f(
~
i) = k~
i f ϕ ~
i
h(M) = h(O) + (k/a)t~
iD
h(M) = M0, h(N) = N0OM
ON =OM0
ON0
hD D ϕ(f( = 0 f(
D Ra(
~
i, B(
~
i,
E2
fΣh
Σ = µa b
c d f(t
~
i+ O) = (at +b) + (ct +d) O , ϕ(f(t
~
i+ O) = ct +b
c h h
d/c t t0Ra
ehe
D
h:t7→ t0=at +b
ct +d
Rp(
1,
2,
0)R0
p(
0
1,
0
2,
0
0)
B B0B B0Σ
B
e0
1
e0
2
RpR0
p
=h
RpR0
p~u1, ~u2, ~u0
(
0
1,
0
2,
0
0)k1, k2, k0k0~u0=k1~u1+k2~u2
U1,U2,U0~u1, ~u2, ~u0BΣ1
¡U1U2¢k1, k2k1, k2, k0
Σ1K = k0U0K = k0Σ1
1U0
=Σ1
1U0
Rp
R0
pDKk1, k2Σ = DKΣ1
D~
i
Rp(
1(
~
i),
2(O),
0(
~
i+ O)) R0
p(
0
1(A),
0
2(B),
0
0(C))
BA = a
~
i+ O,B = b
~
i+ O,C = c
~
i+ O
Σ1=µa b
1 1 ,U0=µc
1K
=µ1b
1aµ c
1=µcb
ac
Σ = µcb0
0acµ a b
1 1 =µa(cb)b(ac)
cb a c
ΣRpR0
p
µt
1=µa(cb)b(ac)
cb a cµ t0
1e:t=a(cb)t0+b(ac)
(cb)t0+ (ac)
et=h(t0) Σ1t0=h1(t)
µt0
1
=µacb(ac)
(cb)a(cb)µ t
1:t0=(ca)(tb)
(cb)(ta)
h(
~
i(direction de D)7→ a, O7→ b,~
i+ O 7→ c)h() = a, h(0) = b, h(1) =
c, h(t0) = t t0= [,0,1, t0]h
h(t0) = [ h(), h(0), h(1), h(t) ] = [ a, b, c, t0]t= [ a, b, c, t0]
et7→ t0a, b, c ,0,1
1 / 15 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !