fΣh
Σ = µa b
c d ¶⇒f(t
~
i+ O) = (at +b) + (ct +d) O , ϕ(f(t
~
i+ O) = ct +b
c h h
−d/c t t0Ra
ehe
D
h:t7→ t0=at +b
ct +d
Rp(−→
∆1,−→
∆2,−→
∆0)R0
p(−→
∆0
1,−→
∆0
2,−→
∆0
0)
B B0B B0Σ
B−→
e0
1
−→
e0
2
RpR0
p
∼
=h
RpR0
p~u1, ~u2, ~u0
(−→
∆0
1,−→
∆0
2,−→
∆0
0)k1, k2, k0k0~u0=k1~u1+k2~u2
U1,U2,U0~u1, ~u2, ~u0BΣ1
¡U1U2¢k1, k2k1, k2, k0
Σ1K = k0U0K = k0Σ−1
1U0∼
=Σ−1
1U0
Rp
R0
pDKk1, k2Σ = DKΣ1
D~
i
Rp(−→
∆1(
~
i),−→
∆2(O),−→
∆0(
~
i+ O)) R0
p(−→
∆0
1(A),−→
∆0
2(B),−→
∆0
0(C))
BA = a
~
i+ O,B = b
~
i+ O,C = c
~
i+ O
Σ1=µa b
1 1 ¶,U0=µc
1¶⇒K∼
=µ1−b
−1a¶µ c
1¶=µc−b
a−c¶
Σ = µc−b0
0a−c¶µ a b
1 1 ¶=µa(c−b)b(a−c)
c−b a −c¶
ΣRpR0
p
µt
1¶=µa(c−b)b(a−c)
c−b a −c¶µ t0
1¶e:t=a(c−b)t0+b(a−c)
(c−b)t0+ (a−c)
et=h(t0) Σ−1t0=h−1(t)
µt0
1¶∼
=µa−c−b(a−c)
−(c−b)a(c−b)¶µ t
1¶:t0=(c−a)(t−b)
(c−b)(t−a)
h(
~
i(direction de ∞D)7→ a, O7→ b,~
i+ O 7→ c)h(∞) = a, h(0) = b, h(1) =
c, h(t0) = t t0= [∞,0,1, t0]h
h(t0) = [ h(∞), h(0), h(1), h(t) ] = [ a, b, c, t0]t= [ a, b, c, t0]
et7→ t0a, b, c ∞,0,1