(un)k∈N∗Rk
Rn>k un=f(un−1, . . . , un−k)
(un)un=f(un−1, . . . , un−k)l f
(l, . . . , l)l=f(l, . . . , l)
un+1 =un+r
un+1 =qun
un=a1un−1+··· +akun−k
a1, . . . , ak∈RFn+2 =Fn+1 +FnF0=F1= 1
(un)n
1IRf:I→R
(un)u0∈I un+1 =f(un)
f(un)u1−u0
f(x) = √1 + x(un) Φ = 1+√5
2
f f ◦f(u2n) (u2n+1)
f(x) = 1 + 1
x(un)
Φ
IRf:I→IC2
k∈]0,1[ ∀x∈I|f0(x)|< k f λ
xn+1 =f(xn)x0∈I λ K =f0(λ)>0
xn> λ n c > 0xn−λ∼cKn
IRa∈˚
I f :I→R
a f(a)=0 f0(a)6= 0 f00
xn+1 =xn−f(xn)
f0(xn)a x0a
f
I f0(a)>0x0>a
y > 0f:x7→ x2−y xn+1 =1
2xn+y
xn
√y x0>√y x0>max(y, 1))
f:x7→ arctan(x)f(x)=0 x= 0
xn+1 =xn+ (1 + x2
n) arctan(xn) arctan(|x0|)>2|x0|
1+x2
0(|xn|)
(xn)
u v