TSI1
?
∀k∈N, Ak=P DkP−1
k∈N
Ak=P DkP−1=1 2
1 1 2k0
0 3k −1 2
1−1
∀k∈N, Ak=−2k+ 2 ×3k2k+1 −2×3k
−2k+ 3k2k+1 −3k
∀k∈N, Xk=AkX0uk
vk=−2k+ 2 ×3k2k+1 −2×3k
−2k+ 3k2k+1 −3k 1
2
∀k∈N,uk= 3 ×2k−2×3k
vk= 3 ×2k−3k
ukvkk
3
(a, b, c)∈R3M(a, b, c)M3(R)
M(a, b, c) =
a+c b c
b a + 2c b
c b a +c
F F ={M(a, b, c) ; (a, b, c)∈R3}
I=M(1,0,0) J=M(0,1,0) K=M(0,0,1)
F= Vect(I, J, K)I, J K
aI +bJ +cK = 0 =⇒a=b=c= 0 (I, J, K)
(I, J, K)F
M(a, b, c)∈F
M(a, b, c)
J K