∀x∈[a, b]f(x) = CZ[a,b]
f=C(b−a)
fZ[a,b]
f= 0
∀α, β ∈C,∀f, g ∈ C([a, b],C),Z[a,b]
(αf +βg) = αZ[a,b]
f+βZ[a,b]
g
f=f1+if2f1, f2∈ C([a, b],R)Z[a,b]
f=Z[a,b]
f1+iZ[a,b]
f2
f=f1+if2, f1=f+
1−f−
1, f2=f+
2−f−
2
f∈ C([a, b],R+)a<b Z[a,b]
f>0
f, g ∈ C([a, b],R)a<b ∀t∈[a, b], f(t)6g(t)
Z[a,b]
f6Z[a,b]
g
∀t∈[a, b], g(t)−f(t)>0Z[a,b]
(g−f)>0Z[a,b]
g−Z[a,b]
f>0
lim
n→+∞Z1
0
xnexxlim
n→+∞Z2n2
n2
arctan x
n
xxlim
x→0+Z3x
x
t
tet
gR R g+g−
g+(t) = max(g(t),0) g−(t) = −min(g(t),0)
g=g+−g−|g|=g++g−