R3v1=
1
2
3
(1,2,3) v2=
2
1
1
v3=
−1
4
7
F= (v1, v2, v3) Vect(F)
R3
f E F
∀x, y ∈E, ∀α, β ∈K, f (αx +βy) = αf(x) + βf(y).
E F L(E, F )K
(x, y, z)∈R37→ (x+y+z, 2x−z)∈R2(x1, ..., xn)∈Rn7→
n
P
i=1
ixi∈R
P∈K[X]7→ XP 0∈K[X]P∈R[X]7→ Z999
945
P(t)dt ∈R
M∈ Mn(K)7→ M+ (M)In∈ Mn(K)M∈ Mn(K)7→ (AM)∈K
f∈ C∞(I)7→ f00 + 2f0+f∈ C∞(I)
u∈ L(E, F )E1E F1F u(E1)
F u<−1>(F1)E
u u<−1>(F1)
E1={0}F1=F
u∈ L(E, F ) 0Fu
Ker (u) := u<−1>({0F}) = {x∈E;u(x)=0F}
Im (u) := u(E) = {u(x)|x∈E}.
E F
Ker (u) Im (u)
{(α, β, 2β−α)|α, β ∈R}(x, y, z)7→ x−2y+z
(α, β)7→ (α, β, 2β−α) (1,0,−1) (0,1,2)