I. Multiplication de nombres relatifs II. Inverse d`un nombre relatif non

NOMBRES RELATIFS
I. Multiplication de nombres relatifs
Règle des signes :
Le produit de deux nombres relatifs de même signe est positif
Le produit de deux nombres relatifs de signes contraires est négatif
Multiplier deux nombres relatifs
Pour effectuer un produit de deux nombres relatifs, on détermine :
Son signe en utilisant la règle des signes
Sa distance à zéro : La distance à zéro du produit de deux nombres relatifs est
égale au produit de leur distance à zéro.
Exemples :
6 x 8 = 48 (-12) x 10 = - 120
5 x (-7) = - 35 (-3) x (-4) = + 12
Remarques :
1) Quand on multiplie un nombre par (-1) on obtient son opposé.
Ex : 7 x (-1) = -7
2) Le carré d'un nombre négatif est positif.
Ex : (-3)²=(-3) x (-3) = (+9)
Règle des signes pour un produit de plus de deux nombres relatifs
Si le nombre de facteurs négatifs d'un produit est pair alors ce produit est positif.
Si le nombre de facteur négatifs d'un produit est impair alors ce produit est négatif.
Exemples :
(+ 2) x (-1) x (+ 3) x (-5) = (+ 30) (-4) x (-5) x (-1) x 7 = (-140)
II. Inverse d'un nombre relatif non nul
Définition : Deux nombres relatifs non nuls sont inverses l'un de l'autre si leur produit est
égal à 1.
L'inverse d'un nombre relatif a non nul est le nombre
1
a
.
Exemples :
2×1
2=1
on dit alors
1
2
et 2 sont inverses l'un de l'autre.
0 est le seul nombre qui n'a pas d'inverse.
/!\ Ne pas confondre inverse et opposé.
Propriété : Un nombre et son inverse sont de même signe.
Exemple : - 0,1 et - 10 sont inverses l'un de l'autre.
Propriété : Diviser un nombre a par un nombre b revient à multiplier a par l'inverse de b :
a÷b=a
b=a×1
b
Exemples :
1) Pour diviser 7 par 0,1 je multiplie 7 par 10.
7÷0,1=7×10=70
2) L'inverse de 0,2 est 5 donc diviser un nombre par 0,2 revient à le multiplier par 5.
20÷0,2=20×5=100
III. Quotient de nombres relatifs
Diviser deux nombres relatifs
Pour effectuer un quotient de deux nombres relatifs, on détermine :
Son signe en utilisant la même règle des signes que pour la multiplication
Sa distance à zéro : La distance à zéro du quotient de deux nombres relatifs est
égale au quotient de leur distance à zéro.
Exemples :
9
3=9
3=3
5
2=
2,5
28
7=4
Cas particuliers :
a
1=
a
; si a 0
a
a
=1
et
0
a
=0
Remarque :
a
b=a
b=a
b
par exemple
2
3=2
3=2
3
IV. Valeur approchée d'un quotient
Définitions :
Une troncature d'un nombre s'obtient en coupant sa partie décimale à partir d'un certain
rang.
L'arrondi d'un nombre s'obtient en coupant sa partie décimale à partir d'un certain rang si
la décimale suivant est 0,1,2,3,4 ; sinon on ajoute 1 au dernier chiffre conservé.
Une valeur approchée d'un nombre est par défaut si elle est inférieure à ce nombre ou par
excès si elle est supérieur à ce nombre.
Exemple :
−11÷61,833333
11
6
est la valeur exacte de
11÷6
-1 est une troncature à l'unité de
11
6
.
-2 est un arrondi à l'unité ; -1,8 est un arrondi au dixième
Pour déterminer une valeur approchée par excès ou par défaut, on commence par
déterminer un encadrement à la précision demandée, par exemple ici au centième :
1,84  −11
61,83
Valeur approchée par défaut Valeur approchée par excès
- 1,84 est une valeur approchée de
11
6
par défaut au centième
V. Priorités dans un calcul (Rappels 5ème)
On effectue d'abord les opérations entre parenthèses, en commençant par les
parenthèses les plus intérieures.
−4²10× [−3×−24] =−4²10×[−3×2]
=−4²10×−6
On effectue ensuite les carrés puis les multiplications et les divisions.
−4²10×−6=−4×−4−10×−6
=16 10×−6
=16 − 60
On effectue les additions et les soustractions.
16−60=1660=76
ZOOM
-2
-3 -1 012
-1,85 -1,84 -1,83 -1,82
11
6
11
6
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !